12-2000

Water Current, Volume 32, No. 6, December 2000

Follow this and additional works at: http://digitalcommons.unl.edu/water_currentnews

Part of the Water Resource Management Commons

http://digitalcommons.unl.edu/water_currentnews/231

This Article is brought to you for free and open access by the Water Center, The at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Water Current Newsletter by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Lake Classification Project Could Establish National Water Quality Ranking Procedure

University of Nebraska-Lincoln water scientists, engineers, remote sensing experts and geoscientists have teamed on expansive research to assess and classify Nebraska's lakes based on water quality. Their research could lead to a national lake water quality ranking procedure.

The team is doing everything from extensively sampling lakes and reservoirs statewide to devising water quality assessment methods and ways to monitor lakes with the help of remote sensing technology, said John Holz, a water quality researcher in UNL's School of Natural Resources Sciences who is coordinating this effort.

"Our team hopes to build methods to assess and classify lakes and reservoirs by more than 20 water quality parameters so we can determine how much impact human activity has had on them and how we might better be able to maintain or improve their water quality," he said.

"The overenrichment of lakes and reservoirs is a long-standing problem, to the extent that nearly half of them are impaired by excess nutrients and associated plant growth," Holz said.

Water quality in lakes and reservoirs that have been minimally impacted by human activities, as defined by U.S. EPA standards, are used as references that will become the basis for developing nutrient criteria to help protect these bodies of water.

The UNL team's research will focus on defining these reference conditions; grouping lakes of similar water quality conditions together; developing ways to use remote sensing and GIS technologies into the lake classification schemes; and maximizing technology transfer to users of the information.

"This will result in a standardized procedure and general framework for approaching the problem, but classifying lakes in different regions may require some fine-tuning to accommodate unique regional challenges," Holz said.

Nebraska is representative of states nationally where agriculture heavily influences water quality, he said. That makes it an ideal location for the research, since most of the lake and reservoir classification efforts thus far have been in ecosystems not dominated by agriculture.

"The general classification framework we develop could be applied to all regions in the U.S., but some of the specific methods may be most useful in agricultural regions," he said.

The team started this project on a small scale about a year ago, using water samples and funding from the Nebraska Department of Environmental Quality. Holz and six other university researchers will develop their (continued on page 12)
I hope you have noticed the new “face” of the Water Current, with its new logo, colors, gloss paper and features, including profiles of water science faculty members. These will continue as a regular feature in upcoming issues of the newsletter.

Our aim is to make the newsletter more attractive, user friendly and informative than ever. A new web site is also being developed to enhance our linkages and ease the transfer of news and information to you. It will also improve our ability to recruit students and prospective faculty members by providing immediate, more comprehensive links to academic programs, research updates, extension and outreach programming, upcoming meetings and events and a wealth of other information about the water sciences as well as the Water Center and its programs.

I ask that you please pay special attention to the previously mentioned faculty profiles because these are the individuals and programs that together make-up the Water Center. Without the basic and applied research, teaching and extension efforts of these dedicated scientists and educators, we would simply have to fold our tent. Thus, it is a pivotal task of the Water Center to facilitate all they do. Please take the time to get to know them, what they do and what they have to offer for your particular water application. After all, this is Nebraska’s only Land Grant institution and our mission in large measure is to serve our citizens.

We plan to highlight some of the water sciences graduate students in future issues of the newsletter also, because as many of you know, it’s the graduate students in the trenches who conduct much of the research that universities accomplish. They do some terrific work and we want to recognize them for that. A surprising number of undergraduate students also participate in basic and applied water research at NU, so they too will be included.

We also will introduce you to the Water Center’s staff, a particularly dedicated and capable group of professionals who do great work, some of which goes relatively unnoticed. They can help you obtain information to answer your questions and solve your water-related issues, so be looking for information on them in upcoming issues.

There are some additional new “faces” at the Water Center since October, as well. Ed Vitzthum, formerly the Water Center’s Interim Director after Bob Volk left to head the Water Center at the University of Kentucky, has accepted the position of Water Center Associate Director and will be responsible for innovative new outreach and educational programs.

(Continued on page 10)

Water Current
University of Nebraska-Lincoln
103 Natural Resources Hall
Lincoln, NE 68583-0844
Phone: (402) 472-3305
Fax: (402) 472-3574
E-mail: sress1@unl.edu
http://watercenter.unl.edu

Kyle D. Hoagland - Director
Edward F. Vitzthum - Associate Director
J. Michael Jess - Assistant Director
Steven W. Ress - Editor
Patricia A. Liedle - Editorial Assistant

This newsletter is published with partial financial support from the Department of the Interior; U.S. Geological Survey. The content does not necessarily reflect the views and policies of the Department of the Interior, nor does mention of trade names or commercial products constitute endorsement by the U.S. Government.
Meet the Faculty

Dr. David M. Admiraal

Hydraulic Engineer and Assistant Professor, UNL Department of Civil Engineering since 1999. Currently teaching Fluid Mechanics and Hydraulics courses and developing a water circulation model for Lake Ogallala. Primary research interests include physics of sediment transport, fluid mechanics instrumentation, environmental hydraulics, fluvial hydraulics and interactions between aquatic organisms and hydraulic processes.

Education:
Ph.D. in Civil Engineering, University of Illinois at Urbana-Champaign, 1999;
MS in Mechanical Engineering, University of Illinois at Urbana-Champaign, 1993; BS in Mechanical Engineering, Calvin College, Grand Rapids, MI 1991.

Samples of current research:
—A dissolved oxygen circulation model for Lake Ogallala.
—Development of a low cost data logger for recording velocity, depth and temperature in lakes and streams.
—Developing a dissolved oxygen budget for Lake Ogallala.

Other recent research:
—Investigated entrainment of sediment under unsteady flow conditions.
—Measured and analyzed bed shear stress distributions beneath a scale model of a barge tow.
—Analyzed the performance of Acoustic Doppler Current Profilers in inundated floodplains.
—Used a one dimensional unsteady flow model to determine the role of floodplains in flood stage reduction.
—Investigated use of the Coanda effect to prevent scour beneath outlet jets.

David M. Admiraal

—Developed a model for predicting heat exchanger performance.
—Collected atmospheric data, wrote software to aid in tracking particle clouds and helped design testing equipment for low-level nuclear waste containers.

Journal Publications and Conference Proceedings:

Dr. John C. Holz

Water Quality Specialist and Research Assistant Professor, UNL School of Natural Resource Sciences since 1998. Primary research interests include the role and interaction of nutrient limitation and herbivory in structuring freshwater plankton communities; surface water quality and management; development of lake classification methodology; restoration of environmentally degraded lakes.

Education:
—Ph.D. in Biological Sciences (Aquatic Ecology), University of Nebraska-Lincoln, 1998.
—M.S. in Forestry, Fisheries and Wildlife, University of Nebraska-Lincoln, 1994.
—B.S. in Natural Resources, University of Nebraska-Lincoln, 1991.

Samples of Current Research:
—Development and implementation of a comprehensive lake and reservoir strategy for Nebraska as a model for agriculturally dominated ecosystems.
—Development of a dissolved oxygen circulation model and oxygen budget for Lake Ogallala.
—Demonstration of the use of barley straw to control algae in Nebraska lakes.
—The role of the nitrogen-to-phosphorus ratio in controlling undesirable algal growth in high phosphorus lakes.

Other Recent Research:
—Demonstration and evaluation of aluminum sulfate as a restoration technique in a Nebraska sandpit lake.
—An experimental mesocosm study of alternate lake states and plankton community breakpoints along a phosphorus gradient.

(continued on page 7)
Quality-Assessed Groundwater Pesticide Data Available Online

by Steve Ress

A ground water clearinghouse project at the University of Nebraska-Lincoln recently released more than 100,000 results for pesticide and nitrate samplings from water wells in every county in Nebraska.

The quality-assessed results are available online at the Nebraska Department of Natural Resources website at http://nrcnt3.dnr.state.ne.us/clearinghouse/index.asp. The extensive database is a result of an ongoing, cooperative project between UNL's Water Sciences Laboratory and the Nebraska Departments of Agriculture (NDA) and Environmental Quality (NDEQ) to assess the statewide condition of groundwater pesticide and nitrate contamination.

The clearinghouse database currently contains nearly 78,000 analyses for 90 pesticides and pesticide breakdown compounds in more than 3,000 wells. Additionally, there are more than 23,000 nitrate analyses in nearly 11,000 wells.

The database enables legislators, regulators, planners and NRDs with environmental concerns to very quickly make assessments of groundwater quality, resolve controversy and propose solutions,” said Mary Spalding, UNL School of Natural Resource Sciences hydrochemist who coordinates the clearinghouse project.

The database contains 25 years of information from a variety of water wells, including domestic, irrigation, public supply and monitoring wells. About 56 percent of the pesticide data is from domestic wells, while more than half the nitrate results are from irrigation wells.

The database can be searched by county, NRD, well location, well registration number and other selection criteria. Results can be sorted and viewed on-screen, downloaded or imported into other applications, such as a spreadsheet. It can be easily imported into Geographic Information Systems (GIS) applications.

“Having a central repository to compile and evaluate data collected by the NRDs, the Nebraska Department of Health and Human Services, NDEQ, the U.S. Geological Survey and NU helps facilitate timely assessments of groundwater nitrate and pesticide contamination,” said Spalding.

What sets the database apart from others is that each groundwater sample received by the clearinghouse is scrupulously checked by Spalding and clearing-house data manager Dottie Harrell to see that it meets an established set of parameters.

“‘Quality assessed’ sets this database apart from others and makes it unique,” Spalding said. Quality assessment parameters applied to each sample include the location of the sampled well, it’s depth, how the sample was collected, stored and analyzed and other practices that were used when the sample was collected and analyzed.

“This strictly adhered to quality assessment ranking allows data covering a period of 25 years and from many different sources to be compared and imparts confidence in the use of the data,” said Spalding.

The nitrate and pesticide data now available in the on-line database represents an investment of hundreds of thousands of dollars in laboratory costs alone.

“In the past, these data would have been relegated to a desk drawer once they served their initial purpose. The clearinghouse provides a large, quality-assessed database to interested parties for incorporation into local and regional assessments and applications,” Spalding said.

The NDA and NDEQ fund this ongoing project.

Groundwater Guardians

On-hand to accept the UNL Water Center’s recognition plaque as a Groundwater Guardian National Partner at last month’s Groundwater Guardian conference in Nebraska City were (from left) Peter Gross of Mutual of Omaha’s Wild Kingdom, UNL Associate Professor and Groundwater Foundation Consultant Bob Kuzelka, Water Center Associate Director Ed Vitzthum and Groundwater Guardian Program Director Rachael Herpel. National Partners help support the Groundwater Guardian’s community-based educational programs. (photo: Shirley Niemeyer)
Pesticides Discovered in Ogallala Aquifer According to Recent USGS Study

Pesticides are getting into groundwater in the Ogallala Aquifer faster than authorities expected, according to the U.S. Geological Survey (USGS).

"The aquifer is more susceptible than we ever thought it was," said Bill Andrews, chief of studies for the USGS office in Oklahoma City, OK.

Andrews said experts had thought it could take hundreds or even thousands of years for contamination to seep into the aquifer.

A survey of groundwater samples taken in cooperation with the Oklahoma Water Resources Board found traces of pesticides that have been in use for only the last 30 years.

The survey looked at water samples from wells at 12 sites in the Oklahoma panhandle. Samples showed a median nitrate concentration of 3.5 milligrams per liter of water.

For comparison, results of 167 samples taken between 1940 and 1992 revealed a median nitrate concentration of 2.3 milligrams per liter.

Pesticide traces found included atrazine, simazine and metalachlor, Andrews said.

The draft study also shows that in two of the wells sampled, nitrate concentrations were higher than what is allowed in drinking water (higher than the U.S. Environmental Protection Agency's recommended 10 milligrams per liter) and one well tested just below that level.

Nitrogen in two of the samples could be traced to animal wastes.

Andrews said the new study is based on only a few samples and "Doesn't necessarily mean the whole aquifer is becoming more contaminated."

The Ogallala is a groundwater formation that cuts through much of the midwest, including Nebraska, Colorado, Kansas, Oklahoma, Texas and New Mexico.

(Taken in part from U.S. Water News, November, 2000).
The weekly schedule is as follows:

Jan. 10: No Public Lecture (seminar introduction and requirements for registered students only).

Jan. 17: Keynote address: "Why People Do Not Always Listen to Scientists: A View from the Political Arena," Peter Longo, Professor of Political Science, UNK.

Jan. 24: "Reflections on the Middle Platte Community," Robert Fenemore, Water, Wetland and Pesticide Division, U.S. EPA Region VII, Kansas City, KS.

Jan. 31: No Public Lecture (exercise for registered students only).

Feb. 7: "Values, Priorities and Agenda-Setting: Surveying Stakeholders and the Construction of Political Possibilities," Lyn Kathlene, Associate Professor of Political Science, UNL.

Feb. 14: No Public Lecture (exercise for registered students only).

Feb. 21: "Resolving Environmental Disputes Through Mediation: A Case Study," Jamee K. Wolfe, Ph.D. candidate in Sociology, UNL.

Mar. 7: "The Human Side of Water Conservation," Gary D. Lynne, Professor of Natural Resource and Environmental Economics, UNL.

(continued on page 10)
Meet the Faculty

Dr. David M. Admiraal (continued from page 3)

induced bed shear stresses,” ASCE Journal of Hydraulic Engineering (accepted for publication, subject to revisions).

Dr. John C. Holz (continued from page 3)

—Phytoplankton community response to reservoir aging.

Current Extension and Outreach Programming:
—UNL/NDEQ/NGPC Lake Water Quality Extension Program. The source of information for lake water quality issues for private lake property owners and others in Nebraska. This program has youth and adult education components, as well as ongoing research implications. Also part of the program is the Community Lake Enhancement Restoration (CLEAR) Program. This program consists of a four member team of lake resource experts from UNL’s Lake Water Quality Extension Program, NDEQ and NGPC. The program’s purpose is to provide technical assistance to Nebraska communities for high-use lake improvement and restoration projects (e.g., city park lakes). The CLEAR program also assists the community in obtaining funding for these lake projects. CLEAR would also be responsible for assisting communities develop sound restoration/education projects and helping to grant funds to eligible projects.

Publications:
Holz, J.C., 2000, Controlling Pond Algae with Barley Straw, University of Nebraska Cooperative Extension NebFact NF00-429.

Nominations Solicited for 2001 Nebraska Water Conference

Nominations are being sought for the Nebraska Water Conference Council’s 2001 Pioneer and Progress Awards that will be presented at the NWCC’s March water conference. NWCC annually presents the Pioneer Award to an individual and the Progress Award to a group or organization who have made outstanding achievements in the water resources arena. Nominations for either or both awards should go to Bob Kuzelka at rkuzelka@unl.edu or by phoning (402)472-7527. Nominations should be submitted at your very earliest convenience. This year’s NWCC conference will be on March 12, 2001 at Grand Island’s Interstate 80 Holiday Inn. Morning topics include “Groundwater quality monitoring objectives and purpose” by Ed Harvey of UNL; “Siting considerations for monitoring wells” by Dave Gosselin of UNL; and “Sampling, handling and analysis considerations” by Ray Ward, Ward Laboratories, Kearney. In the afternoon, Jim Cannea, North Plate Natural Resources District, Gering presents “Dedicated monitoring well network.” Conference details and registration information will be sent to Water Current subscribers in January.
Congratulations To Our Winners

Congratulations to the winners in our Husker Harvest Days drawings in September.

Winning University of Nebraska sweatshirts were: Joseph Abbenhaus, Bloomfield; Judi Hughes, Osceola; and Ann Winans, Elkhorn.

Winning Cross-brand pens were: Jan Benad, Wilsonville; Martha Spotanski, Broken Bow; and Warren Larick, Phillips.

Thanks to all those who visited the Water Center display in the NU Institute of Agriculture and Natural Resources Building at this year’s Husker Harvest Days in Grand Island. See you there again in September.

Avoid Fall Irrigation

NU irrigation experts recommend not irrigating this fall, despite dry fields. Irrigation specialists Bill Kranz of Norfolk and Dean Yonts of Scottsbluff agree that the potential for off-season precipitation looks fair. If Nebraska receives average precipitation this fall and winter, additional water from fall irrigation could result in deep percolation of water and push nutrients below the root zone.

And if the off-season moisture doesn’t come, Kranz said, usually there will be enough time to refill the profile close to capacity in the spring, using center pivot irrigation systems.

NU state climatologist Al Dutcher said predictions show from now through spring, there are equal chances of receiving above normal, normal or below normal precipitation and temperatures.

Last fall, Yonts said most irrigated fields had an estimated 3-4-inch depletion of the soil profile. Refilling that profile should be possible in the spring.

However, playing a role in whether to irrigate this fall and winter would include those trying to establish a fall cover crop, soil type and type of irrigation system used, the experts advised.

TGF National Award Recipients

The Lincoln-based Groundwater Foundation (TGF) has presented it’s Vern Haverstick Groundwater Hero Award to Frank Coss of Puerto Rico. The annual award was created to showcase groundwater protection activities by the unsung, yet heroic efforts of community residents.

Coss is the founder and president of the Steering Committee of Environmental Quality of Puerto Rico, known in Spanish as COTICAM. The organization is composed of community volunteers, industry representatives, civic groups, religious organizations, schools, colleges and government agencies.

TGF’s annual E. Benjamin Nelson Government Service Award, that recognizes government officials who have significantly advanced environmental and groundwater stewardship, went to California State Senator David Kelley.

During his term, Kelley provided critical leadership and support for the largest agriculture to urban water transfers. This transfer will move 200,000 acre feet of conserved water from the Imperial Irrigation District to the San Diego County Water Authority.

The Edith Stevens Groundwater Educator Award was presented to Melissa Henke of Wyoming. The award recognizes individuals who understand the importance of groundwater and motivate others to protect it. Among other activities she is involved in, Henke planned and organized the first Wyoming Children’s Water Festival for local fourth and fifth graders.

All three awards were presented last month at TGF’s annual conference in Nebraska City.

Our New Look

We hope you like The Water Current’s new look. In either case, we want to hear from you.

This is the second issue of the Water Current’s new and updated look and we have received both compliments and suggestions from many of you. We would like to hear more.

If you have suggestions on how to further improve the appearance or content of the newsletter, give us a call at (402)472-3305 or e-mail sress1@unl.edu.

Watch Us On the Web

Just as the Water Current has undergone some needed revamping, so too is our internet web site getting an overhaul.

One of the first things to go was our old 49-character web address of http://www.iianr.unl.edu/iianr/waterctr/wchome.html. Though that address will still get you to the Water Center’s web site, you can now access us using the simpler and more straightforward address of http://watercenter.unl.edu.

In the coming weeks, webmaster Staci Vacek and the Water Center’s faculty and staff will join in a total overhaul of the site’s general lay-out, appearance, links and content. When the overhaul is finished the site will be organized around the following focus and content areas: 1. about the Water Center, 2. Water Current newsletter, 3. academic programs (for both undergraduate and graduate students), 4. research, 5. extension and outreach programming, 6. events, 7. faculty and staff and 8. information library.

We are excited about the new changes to our online appearance and content. The prospect of change promises to be both dynamic and ongoing over the next several months. As with our changes to the Water Current, we invite your input to this process. Let us know what you think.
DECEMBER 2000

8: School of Natural Resource Sciences seminar: Remote Sensing/GIS Papers, Don Rundquist and Jim Merchant, 2-3 Natural Resources Hall, UNL East Campus, 3-4 p.m.
13-16: Ground Water: A Transboundary Strategic and Geopolitical Resource, Las Vegas, NV. Contact Bob Masters, National Ground Water Association at (800)551-7379 ext. 527 or e-mail rmaste@ngwa.org.
15-19: American Geophysical Union fall meeting, San Francisco, CA. For information, contact Harvey Leifert, American Geophysical Union, 200 Florida Ave., NW, Washington DC 20009, phone (800)966-2481 or e-mail hleifert@agu.org.

JANUARY, 2001

10-12: Environmental Factors in Medically Unexplained Physical Symptoms and Related Syndromes, Piscataway, NJ. Symposium convened by the Environmental and Occupational Health Sciences Institute at Rutgers University. Contact Candace Botnick, EOHSI Public Affairs, EOHSI, 170 Frelinghuysen Rd, Piscataway, NJ 08854, phone (732)445-0206 or e-mail botnick@eohsi.rutgers.
14-19: American Meteorological Society annual meeting, Albuquerque, NM. Contact Candace Botnick, EOHSI Public Affairs, American Meteorological Society, 45 Beacon St., Boston, MA 02108-3693, phone (617)227-2425 or e-mail amssinfo@ametsoc.org.

FEBRUARY, 2001

5-9: International Erosion Control Association, Las Vegas, NV. Contact Wendy Raeder, NSF International, 789 N. Dixboro Rd, Ann Arbor, MI 48105, phone (734)879-3010 or e-mail raeder@nsf.org.
17-19: Global Change and Sustainable Development in Southeast Asia, Chiang Mai, Thailand. Contact Louis Lebel, SARCS Science Coordinator, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, Thailand 50000, phone (66)53-263-215 or e-mail lebel@cmnet.co.th.
27-28: Eleventh Platte River Basin Ecosystem Symposium, Holiday Inn, Kearney. To present, to register, or for information, contact Gary Lingle at (308)235-1235 or e-mail glingle@unl.edu. Also on the internet at www.ianr.unl.edu/iarrr/pwp.

MARCH, 2001

12-14: Riparian Habitat and Floodplains Conference, Sacramento, CA. Contact Lyann Comrack, California Department of Fish and Game at (858)467-4208 or e-mail lcomrack@dfg.ca.gov.
19-22: West Coast Conference for Contaminated Soils, Sediments and Water, San Diego, CA. Contact Heather McCreary, AEHS, 150 Fearing St., Ste. 20, Amherst, MA 01002-1944, phone (413)549-5561 or e-mail heather@aehs.com.
21-23: International Scientific Program on Bases for the Evaluation of Chemical Risks, Bordeaux, France. Contact Catherine Bennetau, Enita de Bordeaux, 1 Cours Du General De Gaulle, B.P. 201, 33 175 Gradignan, France, phone (413)549-5561 or e-mail c-bennetau@unitab.fr.

APRIL, 2001

18-20: Fourth National Mitigation Banking Conference, Radisson Bahia Mar, Ft. Lauderdale, FL. How to conference on mitigation and conservation banking. For information, contact the Terrene Institute at www.terrene.org or phone (800)726-5253.
22-25: Small Drinking Water and Wastewater Systems: Treatment, Management and Financing, Washington, D.C. Contact Cherrie Bacon, NSF International, 789 N. Dixboro Rd, Ann Arbor, MI 48105, phone (734)827-6865 or e-mail bacon@nsf.org.

MAY, 2001

15-17: Second National Nonpoint Source Pollution Information and Education Conference, Chicago Botanic Gardens, Glencoe, IL. For information, contact conference coordinator Bob Kirschn at (847)835-6837, FA (847)835-1635 or e-mail bkirschn@chicagobotanic.org.
20-23: National Watershed Conference: Small Watershed Programs - Past, Present and Future, Richmond, VA. Contact John W. Peterson at (703)455-6886 or e-mail jwpetersen@erols.com.

JUNE, 2001

4-7: In Situ and On-Site Bioremediation, San Diego, CA. Contact Andrea Leeson at (614)424-5942 or e-mail leeson@battelle.org.

We're Updating!!

We are updating our mailing list. If you have a change of address, title and/or name, or would like to have your name added to or removed from the Water Current mailing list, please let us know. Also, if you know of anyone who might be interested in receiving our publications, please give us their names and we will be glad to add them to our mailing list.

Change my address ☐ Delete me from your list ☐ Add to your list ☐

Name: ____________________________
Address: ____________________________
City, State, Zip: ____________________________

Send update to:
Water Center, University of Nebraska, 103 Natural Resources Hall, P.O. Box 830844, Lincoln, NE 68583-0844
FAX (402)472-3574
or e-mail changes to sressl@unl.edu
From the Director (continued from page 2)

Mike Jess also recently accepted the position of Water Center Assistant Director, where he will continue his leadership role in organizing and conducting the annual water conference, water seminars and summer water tour. Many of you already know Mike from past conferences and tours, as well as from his many years as Director of the former Nebraska Department of Water Resources.

The mission and goals of the Water Center clearly require a team effort and we are very fortunate and delighted that Ed and Mike are adding their expertise and experience to our team.

Major projects on the horizon include a new fund-raising program, formation of new external and internal advisory committees and new outreach programs and workshops for the NRDs and other water-related natural resource agencies.

Needless to say, our plate is full and we welcome your suggestions and comments as we explore new paths.

Other items of note on my desk as this issue went to press included the following:

— The search for a new senior-level water scientist in NU’s Department of Geosciences. A review of applications for a water geochemist or surface water hydrologist will begin in February, so hopefully we will have a new addition to the faculty to profile in an upcoming issue of the Water Current.

— Dr. Sherilyn Fritz, a paleolimnologist in the Department of Geosciences, recently published a paper in the prestigious international science journal Nature (Nov. 9) on lake evolution in Alaska. Her findings challenge the current dogma that lakes generally become more alkaline and productive with age.

— Mike Jess and Bob Kuzelka have finalized the list of speakers for the spring semester water seminar series. Mike is working on finalizing the agenda for our one-day water conference, that will be held in Grand Island coinciding with The Children’s Groundwater Festival. You should be receiving a conference registration mailing sometime late next month.

Finally, on behalf of the Water Center faculty and staff, I want to wish each of you a very happy holiday season, as well as a joyous and healthy 2001.

Spring Semester Water Resources Seminar: Social Sciences Affect on Allocation of Water and Natural Resources

(continued from page 6)

Mar. 14: NO PUBLIC LECTURE (UNL spring break).

Mar. 21: “The Brush Creek Flood Control Project in Kansas City, MO,” Tom Kimes, Brush Creek Project Manager, Kansas City (MO) Public Works Dept.

Apr. 18: Williams Lecture: “Water Marketing: The Good, the Bad and the Ugly,” Bonnie Colby, Professor of Natural Resource Economics and Public Policy, University of Arizona.

Apr. 25: Concluding Panel: Gene Clock, former staff member of former U.S. Senator Bob Kerrey’s Office; Sandy Scofield, Director, Center for Science, Mathematics and Computer Education, UNL; J. Michael Jess, assistant director, UNL Water Center; and Alan Tomkins, Director, Public Policy Center and Professor of Psychology and Law, UNL.

CONTACTS:

Robert D. Kuzelka, director of environmental studies, UNL School of Natural Resource Sciences, (402)472-3305

Steven W. Ress, communications specialist, UNL Water Center, (402)472-3305
Arsenic Occurrence in Groundwater Illustrated In New USGS Map

A map showing where and to what extent arsenic occurs in groundwater across the nation is now available from the U.S. Geological Survey (USGS).

The highest concentrations of the element were found in samples analyzed in the west, as well as parts of the midwest and northeast.

The map can be accessed on-line at co.water.usgs.gov/trace/arsenic.

Arsenic, a toxic element, was included in amendments to the Safe Drinking Water Act by the Congress in 1996 because of its known prevalence and possible adverse health effects, according to USGS Chief Hydrologist Robert Hirsch. The new USGS map provides a snapshot of where groundwater resources are or could be at risk from arsenic contamination.

Arsenic is a naturally occurring element. Its presence in groundwater is largely the result of minerals dissolving naturally over time, as rocks and soils weather and age.

Several cancers have been linked to arsenic present in drinking water concentrations higher than that observed in U.S. drinking water supplies. High levels of the element have also been linked to vascular system affects and have been associated with development of diabetes.

Concentrations of arsenic in the USGS study were almost always lower than the current U.S. Environmental Protection Agency (EPA) drinking-water standard of 50 micrograms per liter. But in looking at where arsenic concentrations might exceed possible new standards, being looked at by the EPA, the USGS chose the international guideline for arsenic in drinking water of 10 micrograms per liter, as set by the World Health Organization (WHO). By that standard, about 10 percent of the samples in the USGS study exceed the WHO guideline.

The countywide findings on the map were calculated from about 18,850 samples of potable groundwater, but do not necessarily represent testing of every well or drinking water supply system within a given county.

Information about public water supplies in your community can be had from the EPA at www.epa.gov/safewater/dwinfo.htm.

Information about the USGS technical report, A retrospective analysis on the Occurrence of Arsenic in Groundwater Resources of the United States and Limitations in Drinking Water Supply Characterizations (USGS Water Resources Investigations Report 99-4279) is available at the previously mentioned USGS on-line map site, or by calling 888-ASK-USGS. The report summarizes more than two decades of data collected in various studies done in cooperation with state, local and federal agencies.

Private well users who are concerned about the possibility of arsenic in their water should have their well tested. Public health departments and local Natural Resources District offices can help in locating laboratories to have the water tested.

For more information on arsenic, visit these websites:

U.S. Environmental Protection Agency (EPA): www.epa.gov

Environmental Health Information Service: ehis.niehs.nih.gov/topic/arsenic.html

(Taken in part from The Groundwater Foundation’s The Aquifer, vol. 15, no. 2, September 2000).
Lake Classification Project Could Establish National Water Quality Ranking Procedure
(continued from page 1)

methods over the next several years with more than $1.2 million in state and federal grants. Much of the funding was predicated on the U.S. EPA’s desire for a standardized set of processes for assessing lake and reservoir water quality nationally.

The NDEQ’s samples from 159 lakes and reservoirs were tested for temperature, dissolved oxygen, chlorophyll, turbidity (cloudiness of the water), nutrients, pesticides and other information.

The university team will add sampling data from 65 more lakes and reservoirs over the next two years to bring the total to more than 220 statewide.

To determine how a lake or reservoir’s water quality has changed since the European settlers and commercial farming developments and to date individual bodies of water, geoscientist Sherilyn Fritz will bore into the bottoms of lakes and reservoirs to collect soil and sediment core samples. The presence and numbers of the fossilized remains of microscopic diatoms will help determine historical water quality. Soils in the samples will help date the lake.

As data is collected for each body of water, hydraulic engineer Istvan Bogardi will rank them based on water quality and recommend which could be candidates for restoration. Jim Merchant, a geographic information systems researcher, will use geographic information systems technologies to identify factors such as land use and soil types to help define the environmental characteristics responsible for different lake regions.

An important element of the project is developing methods for continued remote monitoring of the lakes and reservoirs.

“The ultimate goal is to be able to ascertain the biological condition of these bodies of water by surveying them from an aircraft or satellite,” Holz said.

Donald Rundquist and Anatoly Gitelson, remote sensing researchers in the university’s Center for Advanced Land Management and Information, are working on a way to measure water quality from afar.

University of Nebraska wetlands students study a Nebraska Sandhills lake. UNL researchers are embarking on a statewide lake classification program with the U.S. Environmental Protection Agency and Nebraska Department of Environmental Quality that could have national implications (photo: Kyle Hoagland).

They’re using an instrument called a spectroradiometer, which detects different kinds of algae and their concentrations based on reflected light patterns. Algae information can reveal a lot about overall lake water quality, Holz said.

Others contributing to the study are Kyle Hoagland, a lake ecologist with NU’s Water Center and more than a half dozen graduate students.

“We hope the methods we are developing for classifying, dating and remotely sensing the conditions of these bodies of water will have national implications and usage,” Holz said.

EPA and NDEQ are helping to fund this research, conducted through NU’s Institute of Agriculture and Natural Resources.