2013

FEA Estimation and Experimental Validation of Solid Rotor and Magnet Eddy Current Loss in Single-sided Axial Flux Permanent Magnet Machines

Xu Yang
University of Nebraska-Lincoln, xu.yang@huskers.unl.edu

Dean Patterson
University of Nebraska-Lincoln, patterson@ieee.org

Jerry Hudgins
University of Nebraska-Lincoln, jhudgins2@unl.edu

Jessica Colton
Boulder Wind Power, jessica.colton@boulderwindpower.com

Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub

Part of the [Computer Sciences Commons](https://digitalcommons.unl.edu/compsci), and the [Electrical and Computer Engineering Commons](https://digitalcommons.unl.edu/electricalengineeringfacpub)

https://digitalcommons.unl.edu/electricalengineeringfacpub/253
FEA Estimation and Experimental Validation of Solid Rotor and Magnet Eddy Current Loss in Single-sided Axial Flux Permanent Magnet Machines

Xu Yang, Dean Patterson, Jerry Hudgins
Department of Electrical Engineering
University of Nebraska-Lincoln, Lincoln NE 68503
xu.yang@huskers.unl.edu, patterson@ieee.org, jhudgins2@unl.edu

Abstract—The rotor and magnet loss in single-sided axial flux permanent magnet machines with non-overlapped windings is studied in this paper. FEA estimations of the loss are carried out using both 2-D and 3-D modeling. The rotor and magnet losses are determined separately for stator slot passing and MMF space harmonics from currents in the stator. The segregation of loss between the solid rotor plate and the magnet is addressed. The eddy current loss reduction by magnet segments is discussed as well. The prototype 24 slot/22 pole single-sided AFPMs, fabricated with both single layer and double layer windings are assembled. Methods of loss segregation are illustrated in order to separate the eddy current loss.

I. INTRODUCTION

Axial flux permanent magnet (AFPM) machines have gained much attention because of their disc shaped structure, which is suitable for traction systems such as in hybrid vehicles, and in wind power generation [1]. Non-overlapped windings (NOW) have also become attractive due to the short end-windings and consequent less copper loss, as well as their fault tolerance and flux weakening ability [2]. However, the rotor eddy current losses, which occur both in a solid rotor and in magnets may increase dramatically, because of stator MMF space harmonics, and stator open slotting which is commonly used with form wound coils.

The estimation of rotor and magnet eddy current loss has been studied recently. Some analytical calculation methods are proposed such as in [3], [4]. Most of the models are two-dimensional with simplifying assumptions. Complex equations are derived based on Maxwell equations. In [5], [6], the rotor losses of a 12-slot 10-pole AFPM were measured and a three layer analytical model was used to interpret the experiment result. In [7], [8] analytical calculation of eddy current loss is compared with finite element modeling. However, since the analytical method is based on simplifying assumptions, which neglect some parameter constraints, the results are always overestimated or underestimated.

A finite element model is preferred because its simulation is based on exact physical geometry, although it is time consuming. 2-D FEA is a common approach. In [9], [10], a simplified 2D FEA model is used to speed up the calculation.

The impact of MMF harmonics of various orders on rotor loss is analyzed. It is concluded that single layer windings have more rotor loss due the richer sub harmonics than double layer windings. In [11], 2-D FEA of eddy current loss in magnets and rotor back iron is analyzed. However, the use of a 2-D model leads to approximate result due to the limited radial extension of actual magnets and rotor in AFPM machine [12]. In [13], a hybrid calculation method, termed as the finite-element aided analytical method, is presented to accurately predict the eddy loss in AFPM machines. In [14], a 3-D finite element method that considered harmonics of inverters is used to calculate loss in each part of the motor separately. It is proved that eddy current loss in permanent magnets from concentrated or NOW windings are larger than that from distributed windings.

This paper is to estimate the rotor and magnet loss due to stator slotting and MMF space harmonics of a 24 slot/22 pole single-sided AFPM with single layer windings and double layer windings by 2D and 3D FEA modeling. The segregation of loss between the solid rotor plate and the magnet is addressed. Eddy current loss reduction by magnet segmentation is also discussed. The prototype 24 slot/22 pole single-sided AFPMs [15], fabricated with both single layer and double layer windings are assembled. The machines are tested at no load and loaded conditions. Methods of loss segregation are illustrated in order to separate the eddy current loss. Experimental measurements are compared with FEA simulations.

II. LOSS ANALYSIS IN MACHINE

The machine power balance is as [16]:

\[
P_m - P_e = P_{f+w} + P_{s,Cu} + P_{s,Fe} + P_{r,Slot} + P_{r,NOW}
\]

where \(P_m \) is the input mechanical power, \(P_e \) is the output electrical power, \(P_{f+w} \) is the friction and windage loss, \(P_{s,Cu} \) is the stator copper loss, \(P_{s,Fe} \) is the stator iron loss, \(P_{r,Slot} \) is the eddy current loss (in both the solid rotor iron and magnets) caused by stator slotting (which is calculated and measured with no current in the windings), and \(P_{r,NOW} \) is the rotor and magnet eddy current loss due to MMF space harmonics caused by non-overlapped windings. One goal of this paper is to determine separately the losses (\(P_{r,Slot} \) and \(P_{r,NOW} \)).
eddy current loss due to PWM harmonics is not considered in this paper.

A. Eddy Current Loss due to Stator Slotting $P_{r,\text{Slot}}$

There is flux density variation due to stator slot opening, which induces eddy currents in the rotor iron and permanent magnets as well. It can be calculated or measured at no load conditions, i.e. when the input current is zero.

B. Eddy Current Loss due to MMF Space Harmonics $P_{r,\text{NOW}}$

The non-overlapped windings exhibit a rich spectrum of space harmonics in the air gap MMF distribution. Thus the rotor loss is caused by different orders of MMF harmonics which are asynchronous with the rotor, inducing current in both rotor iron and magnets. The amplitude of the MMF harmonics can be computed by the star of slots theory [17], [18]. Fig. 1. shows the space harmonic contents of a 24 slot/22 pole stator MMF through Fourier analysis, with both single layer winding and double layer winding. The main space harmonic is the order of 11. As is shown, in the single layer windings there is a large magnitude of sub harmonics, which are harmonics lower than the main harmonic order. It is therefore expected that the rotor and magnet loss in single layer windings will be much higher than for the double layer windings.

III. F INITE ELEMENT ANALYSIS MODEL OF AFPM MACHINE

The parameters of the 24 slot/22 pole AFPM machine are shown below in Table. I. The stators used for experiments are shown in Fig. 2.(a). The FEA software is Ansoft Maxwell. A 2-D FEA model is generally used to provide a quick calculation. A 3-D FEA model is preferred to evaluate the detailed performances. In the FEA work, and the built machines, each pole is split radially into 2 equal segments, to control eddy current losses in the magnets.

A. 2-D FEA Model

The approach to model the AFPM in 2-D is to view the machine from the side. The geometry is a cylindrical cross-section taken at the average radius as shown in Fig. 2.(b). And rotational motion is assigned to model it as if it was a very small portion of a radial flux machine with a very large radius, for example 100 m, where the center of rotation is vertically above the drawings of Fig. 2. For the 24 slot/22 pole machine, only a very small fraction of the large radial flux machine is modeled. The symmetry multiplier in the FEA is however set to 2 with the master and slave boundary conditions applied. The model is shown in Fig. 2.(c).

B. 3-D FEA Model

The 3-D model is shown in Fig. 2.(d). It is expected that more accurate results will be obtained since the physical
geometry is utilized, though it is time consuming. It is noticed that the torque calculation in FEA remains stable, but the rotor and magnet eddy current loss calculation is sensitive to solver parameters such as mesh, time step and nonlinear solver residual.

Meshing is critical. Skin effects need to be considered for the eddy current loss calculation. Accordingly to

\[\delta = \sqrt{\frac{2\rho}{2\pi f \mu_0 \mu_r}} \]

in which, \(\delta \) is the skin depth, \(\rho \) is the material resistivity, \(f \) is the frequency, \(\mu_r \) is the relative permeability. The solid steel has skin depth of 0.28 mm at 500 Hz. For the magnet, the NeFeB-N40 has 87 mm at 500 Hz. Thus it needs a fine mesh near the solid rotor plate surface. In order to do that, two layers of skin sheets are created near the surface of rotor plate for meshing. The mesh should not be too coarse or too fine. A good mesh was determined by trial and error. Too fine a mesh leads to unnecessary computation time, and can make the solution unstable.

The time step is also crucial. A large time step causes non-physical answers. It was determined that time step should be less than the time of one mechanical degree of rotation. In this simulation, the total number of mesh elements is around 215,205 tetrahedra, in the rotor, there is 143,870 tetrahedra, and the time step at 2800 rpm is 54 us. For a simulation time of 5ms, it takes 10 to 20 hours on an Intel(R) core(TM) i7-2600 CPU 3.4 GHz computer with 16G RAM.

C. Eddy Current Loss Calculation in FEA

The algorithm used to calculate the eddy current loss is:

\[P_r = \frac{1}{\sigma} \int_{\text{vol}} J^2 \, dV \]

in which \(\sigma \) is the conductivity of the material, \(J \) is the current density, \(\text{vol} \) is the volume. In 2-D FEA, \(J \) is the eddy current in the z-direction, \(P_r \) is calculated as the integral over the model surface and multiplied by the model depth in the z-direction. In 3-D FEA, it works out element by element the actual current distributions and directions in 3-D space. Thus it should be more accurate.

IV. SIMULATION RESULTS

A. Eddy Current Loss due to Stator Slotting and MMF Space Harmonics

1) Eddy Current Loss due to Stator Slotting \(P_{r,\text{Slot}} \): The simulation is first conducted with no current in the stator windings at a range of speeds in order to determine the rotor plate and magnet loss due to stator slotting only. \(P_{r,\text{Slot}} \) is the same in both single layer and double layer winding since the stator geometries are identical. As shown in Fig. 3, \(P_{r,\text{Slot}} \) is increased as the speed goes up. However, it can be seen that 2-D FEA and 3-D FEA results differ a lot. Since the 2-D FEA model’s current is only in the Z direction, there are no end effects. Thus we expect the loss to be higher in 2-D FEA.

2) Eddy Current Loss due to MMF Space Harmonics \(P_{r,\text{NOW}} \): The same procedure is performed with rated stator current to provide the rated torque for a range of rotor speeds. \(P_{r,\text{NOW}} \) is separated from the total loss by subtraction of the results of Fig. 3, as shown in Fig. 4. Here it is assumed that \(P_{r,\text{NOW}} \) remains the same at no load and loaded condition since the flux field does not change much. As can be seen, single layer windings produce more eddy current loss than the double layer windings. With a double layer winding, at 2800 rpm, the eddy current loss due to stator slotting is 41 W, which is slightly higher than \(P_{r,\text{NOW}} \) which is 37.9 W. With a single layer winding, the major eddy current loss is due to MMF harmonics, at 2800 rpm, which is 113 W and accounts for 73.5% of total loss.

3) Comments on 2-D FEA and 3-D FEA: It could be seen that 2-D and 3-D FEA results differ a lot. The 3-D FEA should perform more accurately since it models the actual geometry. The simulation time takes about 10 to 20 hours. In contrast, 2-D FEA takes less time, about 10 mins, however, the value of the 2-D results for application to a 3-D machine is in doubt.
B. Eddy Current Loss Separation in Solid Rotor Plate and in Magnets

In axial flux machines, a solid rotor plate is used because of mechanical integrity concerns. With a traditional distributed winding, a solid rotor back iron does not experience a strong changing flux field as does the stator steel. However in non-overlapped windings (NOW), the large magnitude of stator MMF harmonics rotating asynchronously with the rotor will induce more eddy current loss in a solid rotor plate.

A 3-D FEA model is implemented. To reduce the simulation time, the center of the rotor plate is subtracted. The eddy current distribution in the solid rotor plate is shown in Fig. 5(a). The current concentrates on the rotor lower surface due to skin effect. Fig. 5(b) provides a better view of the eddy current density and directions by flipping over the rotor plate.

Fig. 6 shows the eddy current loss separation results at rated current in single layer windings by 3 simulations. The total loss is about 154.6 W. The loss in the magnets only of 45.7 W, found by disabling eddy effects in the rotor plate, and the loss in rotor plate only, found similarly of about 114.2 W. The sum of the separated losses is slightly higher than the loss 154.6 W when eddy effects are enabled in both since eddy current in one object actually reduce the flux variations, and hence eddy current losses, in all adjacent conducting objects.

In Fig. 6, it could be seen that in single layer windings, the eddy current loss in rotor plate is a larger portion of the total loss, compared to double layer winding, due to high MMF sub harmonics.

1) Eddy Current Loss on Speed Changes: In Fig. 7, it shows the eddy current loss in solid rotor plate and magnets increases linearly on speeds.

![Fig. 7. Eddy current loss in single layer windings at rated current](image)

2) Eddy Current Loss on Current Changes: In Fig. 8, it shows the eddy current loss in rotor plate increases significantly with current increase than in magnets.

![Fig. 8. Eddy current loss in single layer windings at rated speed](image)

Similar results could be obtained in double layer winding machine, the results are not shown here due to space limits.

C. Eddy Current Loss Reduction in the Split Magnets

In FEA and built machines, each pole is split radially into 2 equal segments, to control eddy current losses in the magnets. The eddy current density reduces in the split
magnets, compared with non-split magnets. The simulation results shows that the eddy current loss in split magnets in single layer winding at rated current is 45.7 W, compared to non-split magnets with 85 W eddy current loss, in splitting results in a loss with a reduction of 47%.

V. EXPERIMENT VALIDATION

A. Assembling of the Single-sided AFPMs

The parts of the tested single-side AFPMs including the stators of single layer winding and double layer winding, stator back plate, rotor and rotor back plate. There are two concerns when assembling them together: the axial attractive force and air gap maintenance. The attractive magnetic force between the stator and rotor imposes a high axial load, which is needed to be considered in the bearing selections. Improper selection will cause bearing failures. A proper single row angular contact bearing, which in the stator back plate, is selected to taking the axial load and a single row deep groove ball bearing, which is in the rotor back plate, is chosen to stabilize and position the rotor and shaft to maintain an equal air gap all the way around the stator and prevent wobbling. The bearings are unsealed and with grease to eliminate the friction loss. Shims are used to maintain the air gap. The designed airgap is 1 mm. However in practical experiment, the airgap is set to 1.78 mm. An equipment is designed to introduce the rotor plate to the stator gradually and evenly.

The assembled two machines are shown in Fig.9:

(a) Single layer winding AFPM
(b) Double layer winding AFPM

Fig. 9. Single-sided AFPM machines for experiment

B. Machine Parameters

1) Back EMF Constant: The designed peak value of phase voltage (line to neutral) at rated speed of 2800 rpm is 143 V. The line to neutral voltage waveform of double layer winding machine at 75% rated speed is shown as in the figure. The voltage probe 100mV equals to 50V, thus the peak voltage value of 216 mV is 108 V, which matches the calculated value of 107.25 V. The single layer winding one is not shown here due to space limits.

C. Test Setup

The experiment test setup is shown as in Fig.11.

1) AC Drive: The 10 HP Yaskawa drive V1000 is to drive one of the machine as prime mover. Its frequency limit is 400 Hz, which means that it can only achieve 78% of rated speed (513 Hz) of the designed machine.

2) Torque Transducers: For no load test, a lower rating with 2 Nm is used for better accuracy. For loaded test, a large rating with 20Nm is used. NI data acquisition DAQ 9191 is used to obtain the output voltage information from the torque transducer.

3) Resistive Load: The resistive load used is a variable 3.3 kW load, maximum current is 8A at Delta connections. However, in order to reach the rated output power of 6.7 kW, a larger load may be used later.

4) Voltage and Current Measurements: Due to the lab limitations, three line to line voltages are measured by the multimeters and three phase currents are measured by the LeCory current probes.

D. Loss Analysis of the AFPM machines in Tests

The machine power balance, similar to (1) is as:

\[P_m - P_e = P_{f+w} + P_{s,Cu} + P_{s,Fe} + P_{r,Total} \]
where $P_{r, Total}$ is the total eddy current loss in both the solid rotor plate and magnets.

P_m is calculated by the measured mechanical torque and speed, P_e is calculated by measuring three phase voltages and currents, P_{f+w} is measured by the test when the stator is replaced with an uncut toroid to isolate the mechanical loss. $P_{s,Cu}$ is calculated by the resistance and currents, $P_{s,Fe}$ is estimated through stator core loss measurement. Thus the eddy current loss $P_{r, Total}$ could be isolated from the measured overall loss which equals to $P_{m} - P_e$. It should be noted that in the experiment, the eddy current loss in solid rotor plate only and in permanent magnets only are not able be separated.

E. Tests

1) Test 1 Isolate the bearing friction and windage loss:

In order to isolate the bearing and windage loss, the stator is replaced by a uncut toroid, which has the same overall dimensions as the wound and slotted stator. The 'machine' is assembled in the same way as previously. For the purpose of ensuring the bearing friction loss in the 'machine' is the same as the bearing friction loss in the actual machine, the axial force between the uncut toroid and the rotor plate should be the same as the one between the actual stator, which has windings in it, and the rotor plate. Through FEA simulation, the air gap needs to be increased to 2.25 mm by adding more shims for equivalent axial force. By magnetostatic solver, the axial force is 1428 newton. Thus, the measured input mechanical power into this 'machine' will be entirely the bearing and windage loss.

The measured loss is taken at both forward (counter clockwise) direction and reverse (clockwise) direction. The bearing loss at various speed from 3% to 75% rated speed are shown as:

2) Test 2 Isolate the stator core loss: The stator core loss is calculated by:

$$P_{s,Fe} = \text{SpecificCoreLossInTeethOnly}(f, B_{\text{teeth}}) \times W_{\text{teeth}} + \text{SpecificCoreLossInBackIronOnly}(f, B_{\text{backiron}}) \times W_{\text{backiron}}$$
in which, W_{teeth}, W_{backiron} is the weight of teeth and stator back iron.

The specific core loss data is measured by the methods in [19]. The specific core loss in teeth are remeasured at different conditions when only one tooth is excited, four teeth are excited and twelve teeth are excited, in order to ensure correctness of the methods and to obtain the most accurate core loss. The flux density in the tooth B_{teeth} is measured by the sensing coil around one tooth in the machine as shown. The flux density in the back iron is accessed by the ratio of $B_{\text{backiron}}/B_{\text{teeth}}$, which is 0.7 according to 3D FEA.

The specific core loss in teeth are remeasured at different conditions when only one tooth is excited, four teeth are excited and twelve teeth are excited, in order to ensure correctness of the methods and to obtain the most accurate core loss. The flux density in the tooth B_{teeth} is measured by the sensing coil around one tooth in the machine as shown. The flux density in the back iron is accessed by the ratio of $B_{\text{backiron}}/B_{\text{teeth}}$, which is 0.7 according to 3D FEA.

![Sensing Coil](image1)

Fig. 15. Sensing coil in the stator

3) **Test 3 No load tests:** The rotor and magnet loss due to stator slotting is measured through no load tests.

$$P_{\text{Loss, Noload}} = P_{f+w} + P_{s, Fe,noload} + P_{r, Slot} \quad (5)$$

$P_{s, Fe,noload}$ is calculated as in Test 2. The flux density in the teeth is measured through the sense coil voltage as shown in Fig.16. It shows that the flux density in the teeth almost keeps constant, around 1.05 T. Thus, $P_{r, Slot}$ could be separated.

![Sensor Coil Voltage](image2)

Fig. 16. Sensing coil voltage at no load condition

The no load loss in single layer(SL) winding and double layer(DL) winding machine should be the same since there are no currents. The test results are shown in Fig.17 in both machines and in both forward and reverse directions. It shows they are close.

4) **Test 4 Load test:** Load tests are performed at different speed from 40%,50%,60%,70%,75% rated speed. At loaded condition, the total loss measured of the machine is:

$$P_{\text{Loss, Loaded}} = P_{f+w} + P_{s, Cu} + P_{s, Fe, load} + P_{r, Total} \quad (6)$$

The tests are performed firstly at 2A rms phase current. The total loss of single layer winding and double layer winding at 2A loaded current is shown in Fig.18.

![No Load Loss at 2A](image3)

Fig. 17. No load total loss $P_{\text{Loss, Noload}}$

The total rotor eddy current loss $P_{r, Total}$ could be obtained by the loss segregation approach described previously.

Due to resistive load limitations, the rated current condition may not be reached at this time.

F. Comparison of the eddy current loss experiment results and FEA simulation results

The separated eddy current loss in experiments is compared with FEA simulations.

1) **Eddy current loss at no load condition:** Results of eddy current loss due to stator slotting $P_{r, Slot}$ at 30%,40%,50%,75% rated speed, are compared as in Fig.19.

2) **Eddy current loss at loaded condition:** Results of eddy current loss ($P_{r, Total}$) at 30%,40%,50%,75% rated speed at 2A rms current in single layer windings, are compared as in Fig. 20.

The differences between 3D FEA and experiment results may due to several reasons, the accuracy of each loss parts, especially the estimation of stator core loss. Test results with other loaded currents will be present in the future work to confirm this comparison.
VI. CONCLUSION AND FUTURE WORK

A detailed 2-D and 3-D model process for a 24 slot/22 pole AFPM machine is established. 2-D and 3-D simulation results of eddy current losses due to stator slotting are compared. The segregation of loss between the solid rotor plate and the magnet is addressed. It shows at rated condition in single layer winding, the eddy current loss is mainly due to MMF space harmonics, and mostly in the solid rotor plate rather than in the magnets. In double layer winding, the eddy current loss due to stator slotting and due to MMF space harmonics are close and the loss in the solid rotor plate and in magnet are almost equal.

The built machines are assembled and tested. Methods of loss segregation are illustrated. Experiment measurements show that eddy current loss in single layer winding are higher than in double layer winding. 3D FEA results are compared with experiments results. Test results with other loaded currents will be present in the future work.

REFERENCES