
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications: Department of Entomology Entomology, Department of

2000

Hydrolase and Oxido-Reductase Activities in
Diuraphis noxia and Rhopalosiphum padi
(Hemiptera: Aphididae)
Xinzhi Ni
University of Nebraska-Lincoln

Sharron S. Quisenberry
Montana State University - Bozeman

Saowaluck Pornkulwat
University of Nebraska-Lincoln

James Lester Figarola
University of Nebraska-Lincoln

Steven R. Skoda
University of Nebraska-Lincoln, sskoda1@unl.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub

Part of the Entomology Commons

This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has
been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Ni, Xinzhi; Quisenberry, Sharron S.; Pornkulwat, Saowaluck; Figarola, James Lester; Skoda, Steven R.; and Foster, John E., "Hydrolase
and Oxido-Reductase Activities in Diuraphis noxia and Rhopalosiphum padi (Hemiptera: Aphididae)" (2000). Faculty Publications:
Department of Entomology. 286.
http://digitalcommons.unl.edu/entomologyfacpub/286

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fentomologyfacpub%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/entomologyfacpub?utm_source=digitalcommons.unl.edu%2Fentomologyfacpub%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/entomology?utm_source=digitalcommons.unl.edu%2Fentomologyfacpub%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/entomologyfacpub?utm_source=digitalcommons.unl.edu%2Fentomologyfacpub%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/83?utm_source=digitalcommons.unl.edu%2Fentomologyfacpub%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/entomologyfacpub/286?utm_source=digitalcommons.unl.edu%2Fentomologyfacpub%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
Xinzhi Ni, Sharron S. Quisenberry, Saowaluck Pornkulwat, James Lester Figarola, Steven R. Skoda, and John
E. Foster

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/entomologyfacpub/
286

http://digitalcommons.unl.edu/entomologyfacpub/286?utm_source=digitalcommons.unl.edu%2Fentomologyfacpub%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/entomologyfacpub/286?utm_source=digitalcommons.unl.edu%2Fentomologyfacpub%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages


PHYSIOLOGY, BIOCHEMISTRY, AND TOXICOLOGY

Hydrolase and Oxido-Reductase Activities in Diuraphis noxia and
Rhopalosiphum padi (Hemiptera: Aphididae)

XINZHI NI,1 SHARRON S. QUISENBERRY,2 SAOWALUCK PORNKULWAT,
JAMES LESTER FIGAROLA, STEVEN R. SKODA,3 AND JOHN E. FOSTER

Department of Entomology, University of Nebraska, Lincoln, NE 68583Ð0816

Ann. Entomol. Soc. Am. 93(3): 595Ð601 (2000)

ABSTRACT Four hydrolases and Þve oxido-reductases were examined using native stacking
polyacrylamide gel electrophoresis. Homogenate of Russian wheat aphid, Diuraphis noxia (Mord-
vilko), bird cherry-oat aphid, Rhopalosiphum padi (L.), ÔArapahoeÕ (aphid-susceptible) and ÔHaltÕ
(aphid-resistant) wheat, Triticum aestivum L., and powdery mildewÐinfected Erysiphe graminis DC.
ex Merat f. sp. tritici Em. Marchal, Arapahoe wheat leaves were assayed for enzyme activities.
Pectinesterase, polygalacturonase (or pectinase), cellulase, and amylase activities were examined in
the hydrolase group. Catalase, peroxidase, catechol oxidase, superoxide dismutase, and ascorbate
oxidase activities were examined in the group of oxido-reductases. The two aphid species had the
samehydrolasesbutdifferentoxido-reductases.Althoughpectinesteraseandcellulaseenzymeswere
present inD.noxiaandR.padi, thebandingpatternsweredifferent. Polygalacturonaseandd-amylase
were not detected from either aphid species. In the oxido-reductase group, catalase was detected
from D. noxia, wheras peroxidase was detected from R. padi. Superoxide dismutase and ascorbate
oxidase activities also were detected from both aphids. Enzyme assays using aphid head tissue that
included salivaryglandsbutexcludedaphid foregut supported theenzymeassaysusingwholeaphids.
Peroxidase activity was detected from the salivary tissue of R. padi, but not D. noxia, and catalase
activity was detected from D. noxia salivary tissue, but not R. padi. We suggest that the salivary
enzyme difference between the 2 aphid species (i.e., catalase and peroxidase) is important in the
type of damage symptom formation on susceptible wheat plants.

KEY WORDS Diuraphis noxia, Rhopalosiphum padi, Triticum aestivum, enzymes

ALTHOUGH APHIDÐPLANT INTERACTIONS have been stud-
ied extensively, considerable work has been focused
on virusÐaphid vectorÐhost plant interactions rather
than the direct feeding damage of aphids on plants.
Mechanisms underlying how nonvector aphids and
other piercingÐsucking insects damage their host
plants are not completely understood. It has been
hypothesized that damage symptoms from feeding by
piercingÐsucking insects are causedby the injectionof
salivary phytotoxins into plants (Miles 1987, 1990;
Burd et al. 1998).

The damage symptoms (i.e., necrotic spots) of
greenbug, Schizaphis graminum (Rondani), on wheat,
Triticum aestivum L., are thought to be the result of a
hypersensitive reaction of wheat leaves to aphid feed-
ing. Pectinases and cellulases are considered the im-
portant salivary enzymes contributing to S. graminum
damage symptom formation on wheat (Campbell
1986, Miles 1990). Feeding damage symptoms of the

spotted alfalfa aphid, Therioaphis trifolli maculata
(Buckton), were shown to be caused by the interrup-
tion of plant redox balance (Miles and Oertli 1993).
Aphid feeding induced the accumulation of oxidases
and phenolic substrates and loss of reducing activity
and protein in alfalfa that caused vein clearing and
localized browning of cells surrounding aphid feeding
sites (Jiang and Miles 1993). Additionally, catechol
oxidase and peroxidase from saliva of the rose aphid,
Macrosiphum rosae (L.), oxidized phenolics and other
allelochemicals in its food plants (Peng and Miles
1991). Thus, previous work suggests that the mecha-
nism of direct aphid damage to plants may involve
either hydrolases or oxido-reductases from aphid sa-
liva. In the saliva and salivary glands of hemipteran
insects, 4 hydrolases and5oxido-reductases havebeen
detected (Madhusudhan et al. 1994). The hydrolases
degrade polysaccharides in the cell wall, whereas the
oxido-reductases interrupt redox balance of plants by
affecting the generation and removal of hydrogen
peroxide (Table 1).

Thedamage symptoms(i.e., leaf folding, rolling, and
chlorotic streaks) caused by Russian wheat aphid,
Diuraphis noxia (Mordvilko), feeding is still not well
understood (Burd et al. 1998), although the effect of
aphid feeding on plant photosynthesis has been ex-
amined (Fouche et al. 1984, Kruger and Hewitt 1984,
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Burd and Elliott 1996). D. noxia extract inßuenced
photosynthesis of isolated wheat chloroplasts (Kruger
and Hewitt 1984). Chloroplast membrane and photo-
synthetic pigments were the important sites respond-
ing to D. noxia feeding (Fouche et al. 1984). D. noxia
feeding also caused signiÞcant changes of chlorophyll
a ßuorescence induction kinetics in susceptible wheat
leaves (Burd and Elliott 1996).

The objective of this study was to compare the
hydrolase and oxido-reductase activities from whole
aphids and salivary glands of symptom-eliciting D.
noxia and nonsymptom-eliciting R. padi using native
polyacrylamide gel electrophoresis (PAGE). Four hy-
drolases (pectinesterase, polygalacturonase, d-amy-
lase, and cellulase) and 5 oxido-reductases (catalase,
peroxidase, catechol oxidase, superoxide dismutase,
and ascorbate oxidase) commonly found in the saliva
of homopteran and heteropteran insects (Madhusud-
han et al. 1994) were examined in the 2 cereal aphids
and their host plants. Because whole-body catalase
and peroxidase activities were different between the
2 aphid species, salivary gland catalase and peroxidase
activities also were examined. We present the results
of enzyme activity assays for 4 hydrolases and 5 oxido-
reductases from the 2 aphid species and wheat plants.

Materials and Methods

Plants and Aphids. The plants were grown in pots
(10 cm diameter) of a soil mixture of silty clay loam
soil, peat moss, and sand (2:1:1 ratio) in a growth
chamber at 21 6 18C, a photoperiod of 16:8 (L:D) h,
and 40Ð50% RH. The colony of D. noxia was originally
established in 1994 from Þeld-collected aphids near
Scottsbluff, NE. The R. padi colony was established in
the fall of 1996 from Þeld-collected aphids near Lin-
coln, NE. Both aphid colonies were maintained on
ÔStephensÕ (susceptible) wheat at 21 6 18C, a photo-
period of 16:8 (L:D) h, and 40Ð50% RH. The aphid
coloniesweremaintainedonyoungwheat seedlings at
the 3Ð5 leaf stages (stages 13Ð15 (Zadoks et al. 1974).

Whole-Aphid and Plant Sample Preparations. Diu-
raphis noxia and R. padi were collected by harvesting

the aphid-infested wheat seedlings at the soil surface
and freezing aphids and plants at 2208C. Immediately
after quick freezing, aphids were removed from the
wheat leaves, weighed, and stored at 2808C. Because
the aphids used in this study were removed from
wheat plants, it was possible that the gut of aphids
contained plant enzymes ingested from wheat leaves.
We therefore used aphid-susceptible ÔArapahoeÕ
(Hein 1992) and ÔStephensÕ (Quisenberry and
Schotzko 1994) wheat and resistant ÔHaltÕ wheat
(Quick et al. 1996) as controls to show enzyme activ-
ities from the aphids and their food plants. Powdery
mildew-infected,Erysiphe graminisDC. exMerat f. sp.
tritici Em. Marchal, Arapahoe wheat was also assayed
to demonstrate possible enzyme activity similarities
between fungus and aphid damage. Plant samples
were collected by harvesting the 2nd or the 3rd leaves
of 4-leaf stage plants (Zadoks et al. 1974). Aphid or
plant material (0.3 g material per treatment) was ho-
mogenized in 100 ml of cold sample buffer (0.1 M
potassium phosphate buffer, pH 7.5, 0.05% tracking
dyeÐbromothymol blue, and 12.5% glycerol). Samples
were centrifuged at 14,000 3 g for 15 min and the
supernatant used for electrophoresis. Each enzyme
activity assay was repeated 3 times.

Aphid Salivary Gland Sample Preparation. Because
peroxidase and catalase activities were found in aphid
whole-body assays, aphid salivary glandswere assayed
for peroxidase and catalase using excised aphid heads.
Excised heads were used because dissecting and col-
lecting uninjured salivary glands from the minute
aphids (,2 mm) was extremely difÞcult. Thus, the
excised aphid heads included salivary glands but ex-
cluded the foregut. We used 600 excised aphid heads
as a sample for the enzyme assays. Aphid heads were
immediately stored in a microcentrifuge tubes with
200 ml cold (48C) extracting buffer (0.1 M potassium
phosphate buffer pH 7.5 and 10% glycerol). A sample
was homogenized using a chilled Teßon microtube
pestle. The homogenate was centrifuged at 48C with
14,000 3 g for 15 min, the supernatant removed, and
diluted 2:1 (supernatant: gel loading buffer). The di-
luted sample (30 ml) was loaded to a sample well on

Table 1. Principles of enzymatic activity assays

Enzyme
Standard Type of

protein
Principle

EC No. Subunit

Hydrolases
Pectinesterase 3.1.1.11 Ñ Ñ Pectin1nH2O pectinesterase3n methanol 1 pectate
Polygalacturonase 3.2.1.15 Ñ Ñ Random hydrolysis of 1,4-a-D-galactosiduronic linkages in

pectate and other galacturonans
a-amylase 3.2.1.1 Ñ Ñ Endohydrolysis of 1,4-a-glucosidic linkages in oligo- and polysaccharides
Cellulase 3.2.1.4 Ñ Ñ Endohydrolysis of 1,4-b-D-glucosidic linkages in cellulose

Oxido-reductases
Catalase 1.11.1.6 Tetramer Fe protein 2H2O2 catalase32H2O 1 O2

Peroxidase 1.11.1.7 Uncertain Fe protein Donor 1 2H2O2 peroxidase3oxidized doner 1 2H2O
Catechol oxidase 1.14.18.1 Ñ Cu protein 2 Catechol 1 O2 catechol oxidase3 2 1,2-benzoquinone 1 2H2O
Superoxide
Dismutase

1.15.1.1 Ñ Cu & Zn, or
Fe or Mn
protein

O2
2 1 O2

2 1 2H1 superoxide dismutase3 O2 1 2H2O2

Ñ

Ascorbate oxidase 1.10.3.3 Cu protein 2 L-ascorbate 1 O2 ascorbate oxidase3 2 dehydroascorbate 1 2H2O

After International Union of Biochemistry 1978, Vallejos 1983, and Murphy et al. 1996.
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agel.Thegel loadingbuffer consistedof 0.05MTris-Cl
(pH 6.8), 0.1% bromophenol blue, and 10% glycerol.
Two samples (each containing 600 aphid heads) were
examined for each aphid species, and the assays were
repeated 5 or 6 times per sample.

Commercial Enzyme Standards. Commercial stan-
dardswereusedaspositivecontrol for theexperiment.
The commercial standards were: pectinesterase (EC
3.1.1.11), polygalacturonase (EC 3.2.1.15), amylase
(EC 3.2.1.1), cellulase (EC 3.2.1.4), catalase (EC
1.11.1.6), peroxidase (EC 1.11.1.7), catechol oxidase
(EC 1.14.18.1), superoxide dismutase (EC 1.15.1.1),
and ascorbate oxidase (EC 1.10.3.3) (Sigma Chemi-
cals, St. Louis, MO).

Electrophoresis Conditions. A Bio-Rad Protean II
vertical mini-gel apparatus was used for electrophore-
sis. Native discontinuous (or stacking) polyacryl-
amide gels were used in this study. The stacking gel
used was 5%, and the separating gel was 10% (except
12% for catalase). A continuous buffer system
(Triszglycine buffer, pH 8.3) was used. Electrophore-
sis was conducted at 48C, with 24 mA or 110 v.

Gel Incubation and Staining. After electrophoresis
was completed, gels were incubated in 10Ð100 ml of
substrate or staining solution. The volume of the in-
cubation and staining solutions varied among the en-
zymes assayed. Unless the procedures were modiÞed
and so stated, all 9 enzymes assayed in this reportwere
determined by following the protocols described by
Vallejos (1983), Madhusudhan et al. (1994), and Mur-
phy et al. (1996). All gels were scored for presence or
absence of the enzymes and photographed immedi-
ately after incubation, staining, and destaining of the
enzyme activities. Gels were Þxed in a gel Þxation
solution (acetic acid/methanol: water in a 1:2:7 ratio),
and photographed in a gel storage solution (50% glyc-
erol). The incubation and staining solutions for the
enzymes assayed are summarized as follows:

Pectinesterase and Polygalacturonase. The gels with
both standards were incubated Þrst in 0.4% pectin
dissolved in 100 ml of 0.1 M malic acid (pH 3) at 358C
on a shaker for 4 h. The gels were then transferred to
stain in 100 ml ruthenium red (0.02%) for 1 h and
destained in water overnight. Pectinesterase activity
was shownbydark red-stainedzones (bands)over the
pink background color of the gel, and the polygalac-
turonase action was shown by a colorless or pale zone
on the gel. The procedure used in pectic enzyme
assays was a combination of the reports by Cruicks-
hank and Wade (1980) on plants, and Laurema et al.
(1985) and Shen et al. (1996) on insects.

a-Amylase. The gels with standard amylase were
incubated in 0.5% of soluble starch in 0.002 M CaCl2
and 0.1 M TriszCl (pH 7.6) for 2 h. The incubated gels
were stained with a mixture of 3% KI and 1.3% I2 for
10min. Amylase bandswere achromatic against a dark
blue background (Lacks and Springhorn 1980).

Cellulase. Postelectrophoresed gels were placed in
a 2% agar overlay containing 0.1% carboxylmethyl
cellulose in 0.05 M disodium phosphate and 0.0125 M
citric acid (pH6.3) and incubated in 408C for 3 h. Both
the overlay and the gels were stained with 0.1% congo

red and destained in 1 M NaCl for 20 min. Cellulase
activity was shown as orange-red bands. The proce-
dure used to detect cellulase activity was modiÞed
after Béguin (1983).

Catalase. Gels were soaked for 45 min in a solution
of 10 ml 0.05 M potassium phosphate buffer (pH 7.0),
1.25 ml of 0.4% 3,39-diaminobenzidine, and 0.1% of
horseradish peroxidase. Gels were then rinsed with
deionized water and immersed in 0.02 M hydrogen
peroxide until achromatic bands appeared on a dark
brown background (Gregory and Fridovich 1974).

Peroxidase. Gels were incubated at room tempera-
tureona shakerwith 100mlof acetatebuffer (pH5.0),
50 ml of 30% hydrogen peroxide, and redox dye (3-
amino-9-ethylcarbazole). The solution was made by
Þrst dissolving 0.05 g of the redox dye in 3 ml of N,
N-dimethylformamide. The dissolved redox dye was
then mixed with 100 ml of acetate buffer and the
hydrogen peroxide was added just before incubation.
Thin dark red bands appeared in 5 min and reached
maximum intensity in 30 min.

CatecholOxidase.Gelswere incubated at room tem-
perature on a shaker in 0.01 M DL- 3,4-dihydroxyphe-
nylalanine (DOPA) in 0.1 M potassium phosphate
buffer (pH 7.4) for 30Ð60 min. Catechol oxidase ac-
tivitywas shownby a dark band in a clear background.

Superoxide dismutase.Theelctrophoresed gelswere
incubated for 30 min in 0.00245 M nitro-blue tetrazo-
lium at dark at room temperature on a shaker. Incu-
bated gels were then transferred to a solution con-
taining 0.036 M potassium phosphate, 0.028 M
TEMED, and 25 (M ascorbic acid for 15 min in the
dark. Gels were then placed under a ßuorescent lamp
for 20 min. Superoxide dismutase activity was shown
by clear bands on a blue background (Beauchampand
Fridovich 1971).

Ascorbate Oxidase. Gels were Þrst incubated in 0.1
M of hydrogen peroxide for 20 min, and then incu-
bated in nitro-blue tetrazolium. After that, the proce-
dure for detection of superoxide dismutase also was
used to detect ascorbate oxidase. Ascorbate oxidase
activity was shown by clear bands on a blue back-
ground (Maccarrone et al. 1990).

Results and Discussion

Hydrolase Activities from Whole Aphids. Pectines-
terase activitywas detected fromD. noxia, R. padi, and
the 3 wheat samples. Polygalacturonase activity was
not detected from either aphid or plant samples (Fig.
1). No (aamylase activity was detected from D. noxia
orR. padi, but was detected from the wheat samples
(Table 2). Cellulase activity was detected from both
aphids and wheat samples (Table 2), although the
banding patterns of the enzymes varied among the
aphids and plants. In the group of hydrolases, both D.
noxia and R. padi showed pectinesterase and cellulase
enzyme activities, whereas neither aphid species ex-
hibited polygalacturonase and a-amylase activities.
Among the wheat samples examined, no differences
were observed in hydrolase enzymes. Pectinesterase,
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amylase, and cellulase were detected from the wheat
plants, but not polygalacturonase (Table 2).

However, in another symptomatic cereal aphid, S.
graminum, hydrolases, in particular pectic enzymes,
were considered important in the necrotic damage
symptom development (Ma et al. 1990, Miles 1990).
Polysaccharase and carbohydrase enzymes from S.
graminum elicit plant wound response by degrading
cell walls or producing cell wall fragments (Campbell
and Dryer 1985, 1990). Furthermore, salivary polysac-
charases (e.g., pectinases and cellulases) have been
hypothesized to enable intercellular stylet penetra-
tion of aphid and other piercingÐsucking insects
(Miles 1990).

Although both D. noxia and S. graminum cause leaf
chlorosis on wheat plants, the symptoms are different.
D. noxia feeding prevents wheat leaf unfolding and
causes rolling and systemic leaf chlorotic streaks on
young leaves (Burd et al. 1993), whereas S. graminum
causes localized necrotic spots (Ryan et al. 1990).
Polygalacturonase and pectinesterase were detected
from S. graminum feeding sites on agar-pectin plates,
but not fromR. padi feeding sites (Maet al. 1990).Our
examination of D. noxia feeding sites on agar-pectin
plates did not show polygalacturonase activity (X.N.
and S.S.Q., unpublished data). The comparisons sug-
gest that the mechanism of D. noxia damage symptom
formation is different from that of S. graminum. Ad-
ditionally, we detected pectinesterase activity from R.
padi that was not detected using the method of Ma et
al. (1990). The difference between the results re-
ported by Ma et al. (1990) and our results is probably
related to the high sensitivity of the modiÞed pectic
enzyme activity assay we used.

Erysiphe graminis tritici infection caused limited
damage symptoms on wheat plants surrounding its
infection sites, which is different from the systemic
damage observed after D. noxia feeding (Burd and
Elliott 1996).Wefound thatE. graminis tritici-infected
wheat had pectinesterase activity, but not polygalac-
turonase activity (Fig. 1). Because both aphid stylets
and fungal hyphae penetrate wheat leaf surfaces, it is
possible that aphid and fungus penetration through
plant tissues are related to pectic enzymes (e.g.,
pectinesterase).Thepectinesterasebandsobserved in
the assays of D. noxia, R. padi, and E. graminis tritici-
infected wheat leaves were different and also may
contribute to the variations observed indamage symp-
tom formation among the species (Fig. 1). Further
experiments are needed to assay pectinesterase activ-
ities in aphid salivary glands excluding pectic sub-
strate. Because ruthenium red also is a protein stain, it
may elicit false positive results for pectinesterase ac-
tivity.

Furthermore, pectinesterase activity has been de-
tected at the feeding site of the cassava mealybug,

Fig. 1. Stained native polyacrylamide gel (10%) showing
enzyme activities of pectinesterase and polygalacturonase.
Pectinesterase activity shown by dark bands, whereas po-
lygalacturonase (or pectinase)was not detected in aphid and
plant samples, except polygalacturonase standard (PA). Ab-
breviations for sample wells: PE, pectinesterase standard (5
ml of 2.18 mg protein per ml); Dn1, D. noxia aphid with 10 ml
sample loaded; Dn2, D. noxia sample with 15 ml sample
loaded; A, Arapahoe wheat (15 ml). H, Halt wheat (15 ml);
Rp, R. padi aphid (15 ml); AF, fungus (i.e., E. graminis tritici)
infected Arapahoe wheat (15 ml); and PA, polygalacturonase
standard (5 ml of 0.016 mg protein per ml) showing negative-
stained bands.

Table 2. Enzymatic activity assays of hydrolases and oxido-reductases using stacking native PAGE electrophoresis

Enzyme
Standard

EC No. Activity D. noxia R. padi wheat-sa wheat-rb wheat-s 1 fungusc

Hydrolases
Pectinesterase 3.1.1.11 3 3 3 3 3 3
Polygalacturonase 3.2.1.15 3 1 1 1 1 1
Amylase 3.2.1.1 3 1 1 3 3 2
Cellulase 3.2.1.4 3 3 2 3 3 3

Oxido-reductases
Catalase 1.11.1.6 3 3 1 3 3 3
Peroxidase 1.11.1.7 3 1 2 3 3 3
Catechol oxidase 1.14.18.1 3 2 2 2 1 2
Superoxide dismutase 1.15.1.1 3 3 3 3 3 3
Ascorbate oxidase 1.10.3.3 3 3 3 3 3 3

1, no enzyme bands detected; 2, faint enzyme bands detected; 3, distinct enzyme bands detected.
a Wheat-s, susceptible Arapahoe wheat.
b Wheat-r, resistant Halt wheat.
c Wheat-s fungus, E. graminis tritici-infected Arapahoe wheat.
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Phenacoccus manihoti Matile-Ferreto (Calatayud et al.
1996). Because P. manihoti and D. noxia have similar
habitat colonization strategies (i.e., prefer to colonize
and live under covered areas or rolled leaves), the
presence of pectinesterase enzymes and absence of
polygalacturonase enzymes could be one of the evo-
lutionary strategies of the homopterans occupying
cryptic habitats.

Oxido-Reductase Activities from Whole Aphids.
Among the 5 enzymes examined in the groupof oxido-
reductases, D. noxia showed catalase activity (Fig. 2;
Table 2) and R. padi showed peroxidase activity (Fig.
3; Table 2). All 5 oxido-reductase enzyme activities
were detected from the wheat plants, except that
catechol oxidase activity was absent from the aphid-
resistant Halt wheat leaves.

Peroxidase and Catalase Activities from Aphid Sal-
ivary Glands. The results of salivary gland enzyme
assays supported the results of whole-aphid assays in
that peroxidase activity (Fig. 4) was detected in the
homogenates of R. padi, but not those of D. noxia.
Additionally, catalase activity was detected from D.

noxia (shown by an arrow in Fig. 5), but not from R.
padi.

Because we found similar hydrolases and different
oxido-reductases from the enzyme activity assays, we
postulate that the difference in the salivary enzyme
activities of D. noxia and R. padi cause variation in
damage elicitation in susceptible wheat plants. Al-
though thebiological function of peroxidase (found in
R. padi) and catalase (found in D. noxia) is the same,
that is, to remove hydrogen peroxide in plants, per-
oxidase needs a donor to reduce hydrogen peroxide,
but catalase does not (Table 1). D. noxia feeding dam-
age (i.e., leaf rolling and systemic chlorotic streaks) on
wheat could be caused by the interruption of normal
wheat plant redox balance when aphid salivary en-

Fig. 2. Negatively stained gel (12%) showing catalase
activity. Catalase activity shownby the clear (or achromatic)
bands against the dark background. CA, catalase standard (5
ml of 1.18 mg protein per ml); A, Arapahoe wheat (5 ml); H,
Halt wheat (5 ml); AF, fungus (i.e., E. graminis tritici) in-
fected Arapahoe wheat (15 ml); Rp, R. padi aphid (5 ml); and
Dn, D. noxia aphid (5 ml).

Fig. 3. Positively stained polyacrylamide gel (10%)
showing the presence of peroxidase. Peroxidase activity
shown by the dark bands. PO, peroxidase standard (5 ml of
1.05mgproteinperml);Dn,D.noxiaaphid(15ml);Rp,R.padi
aphid (15 ml); A, Arapahoe wheat (15 ml); H, Halt wheat (15
ml); and AF, fungus (i.e., E. graminis tritici) infected Arap-
ahoe wheat (15 ml).

Fig. 4. Positively stained native polyacrylamide gel
(10%) showing the presence of peroxidase in aphid head and
whole aphid homogenates. Peroxidase activity shown by the
darkbands.RpS,R.padi aphidhead sample including salivary
glands (30 ml); DnS, D. noxia aphid head sample including
salivary glands (30 ml); Rp,whole aphid sample ofR. padi (30
m); Dn, whole aphid sample of D. noxia (30 ml); PO, perox-
idase standard (10 ml of 1.05 mg protein per ml).

Fig. 5. Negatively stained polyacrylamide gel (12%)
showing the presence of catalase activity. Catalase activity
shown by a clear band on a dark background. Dn, whole
aphid sample of D. noxia (30 ml); Rp, whole aphid sample of
R. padi (30 ml); DnS, D. noxia aphid head sample including
salivary glands (30 ml); RpS, R. padi aphid head sample
including salivary glands (30 ml); W, aphid fodder plants
ÔStephensÕ wheat plants (30 ml); CA, catalase standard (5 ml
of 1.18 mg protein per ml).
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zymes are injected into leaves during feeding. In par-
ticular, the presence of catalase and absence of per-
oxidase in D. noxia salivary glands could be an
important factor contributing to the severe D. noxia
damage elicitation on cereals.

Catalase is a heme-protein (Table 1) with a chelate
or tetrapyrrole structure. Plant cytochromes and chlo-
rophyll a and b also have a similar chelate structure
(Raven et al. 1986, Mengel and Kirby 1987). Catalase
and cytochromes have a similar structure of an iron-
containing chelate ring attached to protein, whereas
chlorophylls a and b attach the chelate rings on a long,
insoluble carbon-hydrogen chain (Raven et al. 1986).
Thechlorophylls haveamagnesiumwithin thechelate
ring rather than an iron (Mengel and Kirby 1987).
Also, catalase removes hydrogen peroxide in plant
tissue and converts it to water and oxygen. Catalase
and superoxide dismutase play a key role in photore-
spiration and glycolytic pathways of plants (Mar-
schner 1986). In plant chloroplasts, the chlorophylls
and protein complex can convert light energy to
chemical energy during photosynthesis. Cytochromes
also are important in electron transfer in plant pho-
tosynthesis and respiration processes (Raven et al.
1986). Therefore, the catalase from aphid salivary
glands could affect normal plant metabolism by af-
fecting the availability of chelate for chlorophyll syn-
thesis and interruption of normal redox balance in
plants by affecting electron transfer during plant pho-
tosynthesis and respiration.

Photosynthetic rates of isolated wheat chloroplasts
were altered when exposed to D. noxia extract
(Kruger and Hewitt 1984); however, no mechanism
was suggested. Burd and Elliott 1996 reported that
chlorophylls a and b and total chlorophyll contentwas
signiÞcantly reduced after D. noxia fed on susceptible
ÔPavonÕ and ÔTAMW-109wheat.However, chlorophyll
content was not signiÞcantly reduced in resistant PI
366616 and PI 372129 wheat. Aphid infestation signif-
icantly altered the chlorophyll ßuorescence induction
kinetics and reduced the photochemical efÞciency of
photosystem II (Burd and Elliott 1996). Thus, the
systemic chlorosis of the wheat leaves caused by D.
noxia feeding could result from interruption of plant
redox balance that inßuences electron transfer. This
would result in damage to the chloroplast membrane
cause either reduction in chlorophyll synthesis or in-
crease chlorophyll degradation.

Comparison of enzyme activities from symptom-
eliciting and nonsymptom-eliciting aphids suggest
that the presence of catalase in D. noxia salivary se-
cretion is an important contributing factor to leaf
chlorosis in susceptible wheat plants. The difference
observed in pectinesterase activity between the 2
aphids also could contribute to differences observed
in damage symptom formation on wheat. Conversely,
previous researchers (Campbell andDryer 1985, 1990;
Ma et al. 1990) reported pectinases and cellulases
were the enzymes responsible for S. graminum dam-
age symptom formation on wheat.
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