Spring 2006

Modeling the Evolution of Natural Organic Matter in the Environment with an Agent-Based Stochastic Approach

Xiaorong Xiang
University of Notre Dame, Notre Dame, IN, xxiang1@nd.edu

Yingping Huang
University of Notre Dame, Notre Dame, IN, yhuang3@nd.edu

Gregory Madey
University of Notre Dame, Notre Dame, IN, gmadey@nd.edu

Steve Cabaniss
University of New Mexico, cabaniss@unm.edu

Leilani Arthurs
University of Nebraska-Lincoln, larthurs2@unl.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/geosciencefacpub

Part of the [Earth Sciences Commons](http://digitalcommons.unl.edu/geosciencefacpub)

http://digitalcommons.unl.edu/geosciencefacpub/308

This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Xiaorong Xiang, Yingping Huang, Gregory Madey, Steve Cabaniss, Leilani Arthurs, and Patricia Maurice
Modeling the Evolution of Natural Organic Matter in the Environment with an Agent-Based Stochastic Approach

Xiaorong Xiang
Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46556; Email: xxiang1@nd.edu

Yingping Huang
Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46556; Email: yhuang3@nd.edu

Gregory Madey
Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46556; Email: gmadey@nd.edu

Steve Cabaniss
Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
Email: cabaniss@unm.edu

Leilani Arthurs
Department of Civil Engineering and Geological Sciences,
University of Notre Dame, Notre Dame, IN 46556; Email [2011]: larthurs2@unl.edu

Patricia Maurice
Department of Civil Engineering and Geological Sciences,
University of Notre Dame, Notre Dame, IN 46556; Email: pmaurice@nd.edu

Abstract

Natural organic matter (NOM) is ubiquitous in terrestrial and aquatic ecosystems, and it plays a crucial role in the evolution of soils, the transport of pollutants, and the global carbon cycle. NOM is a com-
plex mixture of molecules and is thus heterogeneous in structure and composition. As NOM passes through an ecosystem, it is acted upon by a variety of processes, such as microbial degradation, adsorption to mineral surfaces, and photochemical reactions that can change its properties and reactivity. The evolution of NOM in space and time thus is an important research area in biology, geochemistry, ecology, soil science, and water resources. Due to its complex structural and chemical heterogeneity, new simulation approaches are needed to help better understand the evolution of NOM properties and reactivity as it passes through an ecosystem. We present a new stochastic model, which explicitly treats NOM as a large number of discrete heterogeneous molecules (“agents”) with different probabilities of transformations or reactions. The NOM, the microorganisms, and their environment are taken together as a complex system, with the NOM interactions within this system simulated using an agent-based stochastic modeling approach. The initial users of the NOM simulations include a geographically separated group of NSF-sponsored scientists and engineers from different research disciplines, including both academics and U.S. government scientists. A Web-based interface serves as a prototype NOM “collaboratory” designed to promote collaboration among the various researchers and to allow them to share their data, model results, and suggested approaches or improvements across distributed sites. This Web-based interface has been designed to allow researchers to access the simulation model remotely from a standard Web browser. The Web-based interface thus allows researchers at distant locations to provide parameters for their simulations, to start and stop simulations, and to plot and view results, all remotely.

1. Introduction

Natural organic matter (NOM) is a polydisperse mixture of molecules with different structures, compositions, functional group distributions, molecular weights and reactivities, that forms primarily as the breakdown product of animal and plant debris, and that can also be derived from algal sources. NOM is ubiquitous in terrestrial and aquatic ecosystems, and has been widely reported in marine environments. Its structure, chemical composition and reactivity vary both spatially and temporally. NOM plays a crucial role in ecological and bio-geochemical processes such as the evolution of soils, the transport of pollutants, and the global bio-geochemical cycling of elements (Cabaniss [2002]). NOM is a primary food source to microorganisms, and it can act as a natural “sun
Modeling Evolution of Natural Organic Matter in the Environment

block,” attenuating potentially damaging UV radiation (Scully and Lean [1994]) in lakes and streams. While passing through an ecosystem, NOM may be acted upon and potentially altered by a wide array of processes, such as microbial biodegradation, adsorption to mineral surfaces, redox reactions, photochemical processes and aggregation or coagulation. The evolution of NOM over space and time from precursor molecules to eventual mineralization, primarily as CO$_2$, is an important research area in a wide range of disciplines, including biology, geochemistry, ecology, hydrology, soil science and water resources. Given the widespread abundance and importance of NOM to many hydro- bio- geochemical processes, predictive modeling of its evolution in structure, composition and reactivity are fundamental to many areas of environmental research.

Because of the complex nature of NOM, and the multitude of possible reactions it may undergo in natural environments, we have only a limited knowledge of the detailed mechanisms by which it forms from precursor molecules, or how its structure, composition and reactivity evolve over space and time. Perhaps most notably, the fact that NOM is a polydisperse mixture of molecules which themselves have complex structures means that it defies characterization by established analytical methods. Previous models of NOM formation and evolution have been important for predicting certain types of reactions or interactions, but they have not been able to describe both the quantitative aspects of organic carbon transfer and the semi-quantitative or qualitative aspects of NOM structure and functional group heterogeneity. Predicting NOM interactions and their effects on other environmental processes requires a clear understanding both of how a single NOM component behaves and how the entire NOM mixture at a given site evolves over space and time.

In the previous carbon cycling models for NOM study, NOM is treated as a single “organic carbon” entity and the “average” values of properties is used to represent the complex NOM mixture (Brown et al. [1999], Gu et al. [1995], Hansen, Jensen and Nielson [1990], Williams [1985]). The use of average properties of various organic carbon pools when modeling NOM is too simplistic to represent the heterogeneous structure of NOM and its complex behavior in the environment. Also, it can result in discrepancies when the NOM model results are compared with the results from the laboratory studies. The other models that employ specific chemical structures and reactions, e.g., ab initio quantum mechanics and molecular mechanics approaches, are too computationally intensive to be useful for large-scale environmental simulations (Schlich [2002]).
In this paper, we present a novel middle approach, an agent-based stochastic model as shown in Figure 1, that explicitly represents individual molecules as discrete objects with partial structural and functional properties. The temporal evolution of NOM is modeled using a Monte Carlo method in which specific probabilities are assigned to particular transformations. The reactivity of the resulting NOM over time is predicted based on the distributions of molecular properties.

The Monte Carlo method is relatively easy to program and can be quite flexible, since it does not depend upon the availability of analytical solutions. Also in the stochastic approach, complex behaviors of NOM are derived from simple rules and probabilities. It is often simpler to program than deterministic approaches when simulating the dynamics of a complex system.

Agent-based modeling (ABM), also known as individual-based modeling (IBM), is a method used to track the actions of multiple agents that can be defined as objects with some type of autonomous behavior (An-
derson [2002], Grimm [1999], Louis [2002], Railsback et al. [2002], Grimm and Railsback [2005]). By using the ABM approach, the higher level behaviors of a system, called “emergent behaviors” of the system, can be discovered without being explicitly coded into the simulation. Predicting the phenomena at higher levels is based on the actions of individual agents in a “bottom-up” approach. The technique of building and using ABMs is a useful tool for understanding complex systems and is increasingly applied to ecological, economic, environmental, and sociological research. An alternative approach to modeling a system is equation-based modeling (EBM), also called a “state variable” approach (Grimm [1999]), which involves solving a set of differential equations. EBM can describe already known global properties of a system in a “top-down” approach, but often cannot explain the origin of those properties, track the behavior of individual components, or represent extreme heterogeneity. ABMs and EBM are significantly different with respect to which characteristics they focus on. ABMs focus on the characteristics of each individual and track them through time. Equation-based models, on the other hand, focus on the characteristics of the population, which are averaged, and simulate changes in the averaged population characteristics (Parunak, Savit and Riolo [1998]). Grimm [1999] argues that the two approaches are complementary and both provide insight and can potentially both add to scientific theory.

Van Dyke Parunak [1998] working in the domain of supply networks, presented an agent-based model and an equation-based model for modeling a supply network, and concluded that an agent-based model is more suitable for modeling complex systems that are composed of interacting components and exhibit a wide range of dynamic behavior.

NOM, microorganisms, and their environment are taken together as a complex system with a wide range of dynamic behaviors. With the agent-based stochastic model, individual components (molecules) are modeled as individual agents and are given a set of simple rules on how to move through soil pores and how to interact with each other. How individual components or groups of agents with the same initial properties change over time can be tracked. The global properties (e.g., distributions of physical, chemical and biological properties) of NOM evolution over time can be predicted by simulating the physical and chemical reactions between individual agents with temporal and spatial properties.
The advent of the Internet and advanced digital computer technology has produced a new generation of Web-based applications (Fox [2002]). Web-based scientific applications use the Web as a new platform to do research by combining recent information technologies and computational approaches. Unlike other simulators used in the study of NOM thus far, our NOM simulators are deployed as Web-based scientific applications that mainly focus on end users and collaboration. They offer scientists the opportunity to share their data and information with others in the research community by providing a suite of collaboration tools via the Internet. Scientists can access these simulators through the Web interface, configure a particular simulation by providing a set of parameters, and query the data stored in the online databases. This new infrastructure has been used to solve problems such as distributed physical or astronomy data analysis (US national virtual observatory) and to remotely access the information sources and simulations (http://www.cio.noaa.gov/hpcc/projects/200128.html, Jakobovits et al. [2001]). By taking advantage of the database and data mining technologies, large data sets can be stored and the changes of the system can be traced.

In this paper, the conceptual model of the evolution of NOM is presented in Section 2. Five computer implementations or simulations based on the conceptual model are described in Section 3. The Web-based interface is illustrated in Section 4. We discuss preliminary verification and validation of the model and simulations in Section 5. The concluding remarks are drawn in Section 6.

2. The conceptual model

The conceptual model described in this section defines our theoretical world view and ontology that guides the actual design and implementation of the computer simulations described later in this paper. Based on the observational and experimental studies on the behavior of NOM in the environment, we designed a conceptual agent-based stochastic model. In this model, NOM, microorganisms, and their environment form a complex system. The evolution of NOM over discrete time and space from precursor molecules, such as cellulose, lignin and protein, to eventual mineralization involves various molecular transformations. These transformations involve chemical reactions, adsorption, aggregation and physical transport in soil, ground, or surface waters. NOM
Modeling evolution of natural organic matter in the environment is presented as a large number of discrete molecules with varying chemical and physical properties. Individual molecules, modeled as individual agents, are given a set of simple rules on how to move through soil pores and how to interact with each other.

By modeling and simulating the behaviors of individual molecules in the system, we expect that the distributions of physical, chemical, and biological properties of NOM can be predicted. Additionally, such simulations can provide scientists in biology, geochemistry and ecology valuable insight into the processes underlying complex environmental phenomenon.

2.1 Agents.

In the complex NOM system, the agents are NOM molecules. These NOM molecules are hypothesized to be derived from macromolecules such as proteins, polynucleotides, cellulose, lignin or small organic molecules such as phospholipids, sugars and amino acids. To avoid dealing with each possible macromolecule, we work with “representative” molecules, which have typical structures and elemental compositions. These representatives can be used to obtain reasonable similarity to the actual macromolecular precursors.

It is impractical to define precise molecular representations that involve descriptions of atomic location, electron density maps, and force field constants given our goal of modeling thousands or even up to one million individual molecules. We therefore need an intermediate level molecular representation as shown in Figure 1, which is more specific than simply “percent carbon” but less detailed than a precise molecular connectivity map. Also, the representations of structures should be detailed enough to illustrate the heterogeneity of the NOM.

The data used for constructing representations of NOM molecules includes the following components:

- Elemental formula, i.e. the number of C, H, O, N, S and P atoms in the molecule. The molecular weight (MW) can be easily calculated from the elemental formula.
- Functional group count, e.g. carboxylic acid, alcohol, and ester groups. There is a total of 19 possible functional groups in our model for each molecule structure.
• A record of the molecular “origin,” i.e. the initial molecule, its starting position, and its time of entry into the system. This allows for the calculation of separate “turnover times” and apparent ages for individual molecules or fractions. The location of each molecule in the simulation is represented by the \(x \) and \(y \) coordinates of a two-dimensional lattice.

2.2 Behaviors.

In the environment, NOM can move with percolating water down a soil column and into the groundwater and interact with other molecules and their environment. These interacting behaviors can be separated as physical reactions or chemical reactions. The key distinction between these two is whether the molecular attributes change or whether the position/state of the molecule changes. The physical reactions modeled are sorption to and desorption from mineral surfaces, as molecules are transported by water through soil pores. Sorption is not a transformation of molecular structure; however, it will affect the probability of other reactions by changing the environment of a given molecule.

In this conceptual model, the individuals are associated with a location in geometrical space and can move around their environment. The geometrical space is described as a discrete 2D grid space represented by integer values. Molecules enter the system at the top of the grid space, move with the water flow, and leave the system at the bottom of the grid.

The physical reactions are modeled based on the results of laboratory experiments. As described by Zhou et al. [2001], the lower molecular weight molecules adsorb and desorb quickly and are gradually replaced at surface sites by larger molecules that adsorb and desorb slowly. This correspondence between empirical data and model behavior is used to help validate the simulation.

Chemical reactions result in structural changes in the molecule, such as the addition of groups to an NOM molecule. New molecules can be generated from predecessor molecules and those predecessor molecules may leave the system. Twelve types of chemical reactions, including first-order and second-order chemical reactions, are modeled as described in Table 1. Others will be added as needed.

These 12 chemical reactions are separated into four categories:
• First order reactions with a split: The predecessor molecule \(A \) is split into two successor molecules \(B \) and \(C \), molecule \(B \) occupies the position of molecule \(A \), and one of the empty cells nearest molecule \(B \) is filled with molecule \(C \).

• First order reactions without a split: The transformation only changes the structure of the predecessor molecule \(A \).

• First order reactions with the disappearance of a molecule: The predecessor molecule \(A \) disappears from the system. This reaction occurs when the molecule is small enough that it can be enveloped by a microorganism like fungi or bacteria.

• Second order reactions: Two molecules \(A \) and \(B \) are combined to form a new molecule \(C \); the new molecule \(C \) replaces molecule \(A \) while the other predecessor molecule \(B \) disappears from the system.

During each time step, molecule \(A \) is chosen. If the generated random number indicates that a second order reaction should occur, a second molecule \(B \), which is nearest the location of \(A \), is found in the grid. For example, for an ester condensation reaction, molecule \(B \) should have nonzero alcohol groups. These two molecules combine to form Mole-
The probabilities are calculated for molecule C and the structure for molecule C is determined. Molecule C replaces the position of A and molecule B leaves the system.

2.3 Reaction probabilities.

The common rate law governing macroscopic chemical kinetics is that for first order reactions in which the rate or velocity of a reaction R (units of concentration per time) depends only on the concentration of the reacting molecule C (units of concentration) and a rate constant k (units of reciprocal time).

$$\begin{align*}
R &= kC. \\
\end{align*}$$

In the second-order reactions, the rate depends on the concentration of two reacting molecules C_1 and C_2 as shown in equation (2). It can be reduced to an apparent first order equation (3).

$$\begin{align*}
R &= kC_1C_2 \\
R &= k'C_1 & \text{where } k' = kC_2
\end{align*}$$

The probability for each reaction type is expressed in terms of intrinsic and extrinsic factors. Intrinsic factors are derived from the molecular structure including the number of functional groups and any other structural factors. Extrinsic factors arising from the environment include concentrations of inorganic chemical species, light intensity, availability of surfaces, presence of microorganisms, presence and concentration of extracellular enzymes and the presence and reactivity of other NOM molecules. The intrinsic and extrinsic factors are combined in probabilistic functions that are defined by Cabaniss [2002] for a particular molecule under a particular set of circumstances. Each set of N reactions for a particular molecule can occur with some probability P.

The probability that a molecule will react via reaction i over the time interval Δt is defined in equation (4) where k' is the first order or apparent first order rate constant.

$$\begin{align*}
P_{i,\Delta t} &= \Delta tk'_i
\end{align*}$$

The environmental parameters that affect the apparent rate constants include acid and base concentrations, i.e., pH, temperature T, dissolved
oxygen gas (O_2), light density (I), microbial density (MD), fungal density (FD) and water ($Water$).

The probability of each reaction incorporates the effects of oxidizing reactions, photochemical reactions and biochemical reactions. For example, the probability of the Ester hydrolysis reaction for a given molecule depends on the number of Ester functional groups $#Ester$ in the molecule and can be calculated using equation (5). In this equation, A, b, c are constants, E_a is activation energy and R is ideal gas constant.

\[
P_{esterhydrolysis} = \Delta t (Water) \times (#Ester) \times A \times e^{-E_a / RT} (1 + b[H^+] + c[OH^-])
\]

where $A = 6 \times 10^5 hr^{-1}$, $E_a = 60 kJ mol^{-1}$, $b = 10^4$, $c = 3 \times 10^8$.

2.4 Molecular properties.

The reactivity of the resulting NOM over time can be predicted based on the distributions of molecular properties. Some molecular properties of NOM can be calculated and predicted. These properties are quantities which can be calculated from the elemental composition and functional group data. They represent a measurable quantity which can be used as a predictor for an environmental function. They are also useful and interesting both as part of scientific inquiry and for the calibration and verification of our conceptual model and simulation. Some properties are easy to calculate, such as molecular weight, molecular charge and charge density. On the other hand, others involve nontrivial computations. Also, some properties are exactly calculated, e.g., molecular weight, while others must be estimated by empirical relationships which will introduce additional uncertainty, e.g., pKa.

2.5 Simulation process.

The conceptual model is a stochastic synthesis model of NOM evolution. It serves as a design framework for the computer simulations described later in this paper. In a stochastic process, the state of the system is represented by a set of values with a certain probability distribution, such that the evolution of the system is dependent on a series of probabilistic discrete events.

Individual molecules are represented as agents with their own complex structures. These molecules move along with the water flow and re-
act with each other in a 2D discrete grid, i.e., a rectangular lattice composed of multiple cells. Each molecule can occupy at most one cell and each cell can host one or more molecules. During each time step, each molecule may move to another location, experience adsorption to or desorption from a particular site, and chemically react with other molecules. The basic algorithm for building simulations from the conceptual model is illustrated in Figure 2. It includes the following major steps (not all may be used in any particular simulation):

1. Initial molecule creation: Molecules are created by obtaining values for all quantities in the molecule’s structure. The quantities are obtained from the users’ inputs and calculated from these inputs.

2. Modeling the movement and sorption (for porous media): As molecules move along with the flow, they can be adsorbed to surfaces or desorbed from them based on random probabilities.

3. Modeling the reaction: Molecules are allowed to react for a predetermined length of time under fixed external conditions and molecule structures are recorded into the database at defined time increments.

4. Property calculation: In order to better understand and monitor the global properties of NOM over time, large amounts of information for the system are stored in the database for calculation and analysis.

The simulation time, defined by the user, is divided into a very large number of equal, discrete and independent steps called “time steps.” In each time step, each molecule in the system is chosen in random order. To determine which reaction will take place in a given time step, we calculate the probability \(p_i \) of each reaction according to the environmental variables and the structure of the chosen molecule. A random number is generated to see which reaction will occur. This random number is compared with the precalculated reaction probabilities associated with the chosen molecule. The molecule structure and properties associated with the molecule are updated after each physical or chemical reaction occurs.

The sum of all the reaction probabilities is controlled to be less than 1 percent to enforce the assumption that each molecule has at most one reaction per time step. This is controlled by choosing sufficiently short time steps, \(\Delta t \), e.g., see equation (5). However, if the sum is too small, it will take more time to simulate the process. Thus, in our model, the sum of all
Figure 2. A flow chart for building simulations from the conceptual model. Actual implementations of NOM computer simulations may include a subset of these steps since they focus on one aspect of NOM behavior, e.g., adsorption or reactivity.
the reaction probabilities is set as:

\[(6) \quad \sum_{i=1}^{m} p_i < 0.01 \quad \text{where} \quad m = \text{number of reactions}, \]
\[p_i = \text{probability of reaction } i \]

The probability that two reactions occur in a time step for one mole-
cule is less than \((0.01) \times (0.01) = 0.0001\). This number is small enough that
this situation can be ignored in the model and higher numbers of reac-
tions per molecule per time step are even much less likely.

The interval \([0, 1]\) is partitioned into 13 subintervals as shown in Fig-
ure 3. The length of the first interval is equal to the probability of the first
reaction type, the length of the second interval is equal to the probabili-
ty of the second reaction type, and the length of the \(i\)th interval is equal
to \(p_i\). The length of the last interval is the probability that no reaction will
occur and is described by the following equation.

\[(7) \quad p_{m+1} = 1 - \sum_{i=1}^{m} p_i > 0.99. \]

The random number from the interval \([0, 1]\) resides in one of these in-
tervals, and it will determine whether and what type of a chemical reac-
tion takes place, the attributes for the current molecule are updated and
reaction probabilities are recalculated. The molecule structure is changed

\[\text{Figure 3. Probability calculation for each molecule at each time step.} \]
to affect the outcome of the reaction and a new probability table entry is added for newly formed molecules, if there are any.

3. Implementations/simulations

There are five implementations derived from the conceptual model as shown in Figure 4. Since our simulation model is intended to be used in multiple scientific research fields, each of these implementations is focused on one or several different aspects that we described in the conceptual model.

AlphaStep is a reference implementation that is coded in Delphi 6 and runs under Windows XP. It is a demonstration of the comprehensive conceptual model that doesn’t have Web and collaboration features. AlphaStep simulates a variety of chemical and biological transformations but does not simulate any type of transport and does not represent the spatial properties of NOM. Hence, it represents a batch or closed system without porous media. AlphaStep is intended as a stand-alone application to allow ecologists, geochemists and environmental scientists to explore possible routes of NOM transformation. It is available for download from http://www.nd.edu/~nom/software.
The other four implementations are coded using the Java programming language (Sun JDK 1.4.2) and Swarm (Minar et al. [1996], http://www.swarm.org) and RePast (http://repast.sourceforge.net) software. Swarm is a software package for simulating complex systems that was developed at the Santa Fe Institute. It is a set of libraries that facilitates the implementation of agent-based models. RePast is a Swarm-like agent-based simulation toolkit written in the Java language. It was developed by the University of Chicago and Argonne National Laboratory. Swarm and Repast provide versatile random number generators and distributions, both essential to stochastic computer simulations. Also, these toolkits provide high level visualization capabilities. A control panel allows a running model to be stopped, restarted, or executed step by step. They also allow modelers to visualize the current state of the running model and probe every object in the model. An animation window shows the location of individual agents in a space. Line graphs and histograms are used to illustrate changes in collections of model objects that occur during the simulation. Additionally, simulation data, such as population size over time, can be reported periodically as the model executes. Figure 5 is a screen shot of a Flow-Sorption simulation used by the authors for verification and validation of the simulation.

The FlowSorption and No-flowSorption implementations, respectively, model laboratory column and batch adsorption experiments. Since some scientists are more interested in the physical reactions of NOM, we focus on sorption and movement features over time and disable chemical reaction features in these two implementations. The No-flowSorption simulates the batch adsorption experiment with all molecules added to the system at the beginning and diffusing throughout the medium. There are no molecules entering into or leaving the system during the subsequent time steps. On the other hand, the FlowSorption is characterized by the incremental input of molecules over time and transport down the column, with adsorption or desorption to mineral surfaces. Molecules can flow into and out of the modeled column system, resulting in a continuously changing population of molecules in the systems. Molecules undergo advection and dispersion.

The FlowReaction and No-flowReaction are implementations that simulate all the features described in the conceptual model. NOM molecules are represented as agents with properties defined by users. Molecules
can move and interact with each other. Molecules can be all uniformly distributed on the 2D grid at the beginning followed by diffusion or they can be added at a constant rate into the system to simulate their mobility in flowing water including advection and dispersion.

There are two running modes for these four implementations: a standalone mode coupled with a graphical user interface (GUI) and a Webbased mode with a Web-based interface. The GUI version is mainly used by the software developers for debugging, testing, and validation purposes, although it can be downloaded and installed by users on their local computer. These four implementations are also deployed on the Web so that users can access them through a browser, such as Internet Explorer and Netscape. Section 4 focuses on the Web-based interface implementation.

Figure 5. Example of a snapshot from a *FlowSorption* simulation. The left side displays molecules moving through the column: adsorbed (closed circles) or dissolved (open circles). Colors represent different MW intervals. The right side displays the corresponding MW distribution of adsorbed (higher peak) versus dissolved molecules. Adsorption is preferential for intermediate to high MW components. In this example, the model input was the molecular weight distribution of the NOM with adsorption controlled by molecular weight. Specific chemical reactions were not explicitly considered.
4. Web based interface

Unlike other simulators used in the study of NOM thus far, our NOM simulators are built as Web-based applications. Huang et al. [2005] gives the detail of the infrastructure and database. Web-based applications are mainly focused on end users and collaboration. Compared with the traditional stand-alone application, there are several advantages of using the Web as a new platform for scientific study. Scientists do not need to download, build, and install the application packages or related software on their own computers which can sometimes be a tedious task, especially for applications written in Fortran, Pascal, C, or C++ that need to be compiled to native code. Scientists can share the expensive computational resources or instruments, such as large-scale databases, which are not readily affordable for small groups. Web-based applications offer scientists the opportunity to share their data and information with others in the research community by providing a suite of collaboration tools. Deployment of the simulators on the Web promotes their use as a “collaboratory” or a collaborative laboratory for geographically separated scientists and engineers. In order to support collaborative work, an NOM collaboratory is built based on Sun Java 2 Enterprise Edition (J2EE) and relational database technologies, in particular the Oracle database. Our NOM collaboratory includes Web-based simulators, data analysis packages, simulation configurations, and communication tools such as a discussion board and chat room. Xiang et al. [2004] provides details on the online collaboration features that can support environmental science researchers.

Scientists can access these Web-based simulators through a Web browser. They choose a particular simulator and provide the input parameters that are then stored in the remote database. After they submit their configuration, simulations are invoked at a remote computer. When simulations are finished, users are notified by Email. They then can access the data output from the referred site. These data results not only include the raw data but also the graphic results that are generated by the data analysis packages using data mining technologies as shown in Figure 6. The built-in functionalities of our NOM collaboratory allow scientists to share all their simulation results, data, and information with others. They are also able to access data from previous simulations.
5. Verification and validation (V&V)

Verification and validation are the subject of continuing work and future publications. Some examples of results to date are discussed in this section. Verification and validation (V&V) are processes used to increase confidence in simulations. Verification is about getting the “simulation right” while validation is about getting the “right simulation.” Although neither process guarantees absolute confidence, we use numerous V&V techniques on the NOM simulations. We describe our approach using an adapted version of Sargent’s V&V process shown in Figure 7 (Schlich [2002]).

Face validity. One method to contribute to conceptual validity is to ask subject matter experts to review the conceptual model for scientific plau-
sibility providing what the simulation and modeling literature calls face-validity. Six scientists on the project: two biologists, a chemist, a geomicrobiologist and two soil scientists, evaluated the conceptual model for face validity and agreed with the theoretical and scientific plausibility of the model.

Cross simulation comparison. When more than one implementation of the conceptual model is available, a cross-simulation comparison test can be used to verify those simulations. We have several different simulations with different features, all implemented using the same specifications of the conceptual model. One simulation, AlphaStep, is a stand alone program written in Delphi/Pascal and runs on a PC; the other four implementations, written in Java, use agent simulation toolkits, and run as Web-based applications on Linux servers. This cross-simulation comparison, sometimes called docking or model-to-model comparison, was used to confirm corresponding behaviors between the two simulations,
increasing verification confidence in both implementations. Figure 8 shows time evolutions of two properties in each implementation, showing good correspondence between these two.

Empirical validation. A strong method for simulation validation is a comparison of simulation output with actual empirical observations. The simulation is used to study the relationship between the adsorption of NOM molecules on mineral surfaces and the molecular weight of the molecules. NOM adsorption is preferential to intermediate to high molecular weight components, shown in laboratory data and confirmed in the field. The simulation has yielded a similar distribution as reported by Arthurs et al. [2004].

Visualization. Visualization of the behavior of the simulation is another useful technique used for simulation validation (Grimm [2002]). A snapshot of an animated visualization of the flow of molecules through a soil column depicting the adsorption and desorption of the molecules to mineral surfaces in the simulation is shown in Figure 5. In addition to the color coding of molecules by molecular weight, the adsorbed or desorbed states are depicted by solid and hollow circles, respectively. A corresponding animated graph of the molecular weight distribution shows how the molecular weight distribution shifts with time, initially favoring lower weight molecules in the early stages of the simulation and gradually shifting to larger molecular weights as the simulated time passes. These same behaviors were observed in laboratory experiments, increasing the confidence in the simulation.

6. Conclusion

In this paper, a new modeling approach, agent-based stochastic modeling, is presented for studying the behavior and evolution of NOM with temporal and spatial properties. Five simulators are derived and implemented based on the comprehensive conceptual model. Some implementations are partially validated by comparisons with laboratory data. More validation and verification is planned. Also four implementations are deployed on the Web to facilitate the data information sharing and collaboration among the geographically separated scientists. Eventually, we expect that the model can provide scientists with a test bed and predict the evolution of NOM over time.
Figure 8. The figure shows a comparison of two molecular properties for two implementations. Since they are stochastic simulations, the output is an ensemble average of 25 replicates for each implementation.
Acknowledgments — This research was supported in part by a NSF ITR Grant No. 0112820 and by the Center for Environmental Science and Technology at the University of Notre Dame.

References

R. M. Jakobovits, J. F. Brinkley, C. Rosse, and E. Weinberger [2001], Enabling Clinicians, Researchers, and Educators to Build Custom Web-Based Biomedical Information Systems, in AMIA Annual Fall Symposium, 279–283.

Swarm Development Group, http://www.swarm.org

U.S. National Virtual Observatory, http://www.us-vo.org/software.html

J. Williams [1985], *The EPIC Model An Overview*, in Natural Resources Modeling Symposium.
