2001

Evidence for Different Mechanisms of Chloroquine Resistance in 2 *Plasmodium* Species That Cause Human Malaria

Takashi Nomura
Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases

Jane M-R Carlton
Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda

J. Kevin Baird
US Naval Medical Research Unit No. 2, Jakarta, Indonesia, jkevinbaird@yahoo.com

Hernando A. del Portillo
Departamento de Parasitologia, Universidade de São Paulo, São Paulo, Brazil

David J. Fryauff
Malaria Program, Naval Medical Research Center, Silver Spring, Maryland

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/publichealthresources

http://digitalcommons.unl.edu/publichealthresources/332

This Article is brought to you for free and open access by the Public Health Resources at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Public Health Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Evidence for Different Mechanisms of Chloroquine Resistance in 2 Plasmodium Species That Cause Human Malaria

Takashi Nomura,¹,a Jane M-R. Carlton,² J. Kevin Baird,³ Hernando A. del Portillo,⁶ David J. Fryauff,⁹ Dharmendar Rathore,¹ David A. Fidock,¹,a Xin-zhuan Su,³ William E. Collins,⁴ Thomas F. McCutchan,¹ John C. Wootton,² and Thomas E. Wellems³

Chloroquine (CQ)-resistant Plasmodium vivax malaria was first reported 12 years ago, nearly 30 years after the recognition of CQ-resistant P. falciparum. Loss of CQ efficacy now poses a severe problem for the prevention and treatment of both diseases. Mutations in a digestive vacuole protein encoded by a 13-exon gene, pfcrt, were shown recently to have a central role in the CQ resistance (CQR) of P. falciparum. Whether mutations in pfcrt orthologues of other Plasmodium species are involved in CQR remains an open question. This report describes pfcrt homologues from P. vivax, P. knowlesi, P. berghei, and Dictyostelium discoideum. Synteny between the P. falciparum and P. vivax genes is demonstrated. However, a survey of patient isolates and monkey-adapted lines has shown no association between in vivo CQR and codon mutations in the P. vivax gene. This is evidence that the molecular events underlying P. vivax CQR differ from those in P. falciparum.

In malaria campaigns, the morbidity and mortality of Plasmodium falciparum malaria in Africa is often emphasized, whereas the global impact of the less deadly malaria caused by P. vivax is overshadowed. Although P. vivax malaria rarely is fatal, it is, nevertheless, a debilitating disease with tremendous impact on the quality of life and economic productivity. Estimates of the annual number of P. vivax cases range from 75 to 90 million, with most occurring outside Africa. Chloroquine (CQ) has been the drug of choice for eliminating P. vivax blood stages, but resistance has been an increasing problem since it was first reported in Papua New Guinea in 1989 [1] and Indonesia in 1991 [2, 3]. Field trials in Papua (Indonesian New Guinea, formerly known as Irian Jaya) showed recrudescence in 22% of patients with P. vivax after treatment with CQ [4]. CQ resistance (CQR) also was found in 14% of P. vivax infections in an island population off the coast of northwestern Sumatra [5]. The geographic distribution of CQ-resistant P. vivax has extended more recently to India [6, 7], Myanmar [8, 9], and, in the Western Hemisphere, to Guyana [10] and Brazil [11].

Despite comparable use of CQ against P. vivax and P. falciparum malaria throughout the second half of the 20th century, the emergence of CQR in P. vivax 3 decades after that of P. falciparum [12, 13] and the unique recurrence profile of CQ-resistant P. vivax, compared with that of CQ-resistant P. falciparum in vivo [14], suggest the possibility of different resistance mechanisms between the 2 species. A gene (pfcrt) with a central role in the CQR of P. falciparum has been described recently [15]. Point mutations in the encoded PfCRT protein were found to associate completely with the in vitro laboratory measurements of CQR in P. falciparum lines from Asia, Africa, and South America. The importance of these mutations was reinforced further by genetic transformation results and by a West African study that showed that PfCRT K76T and certain other accompanying amino acid changes were selected in 100% of patients in whom treatment failed, compared with the baseline prevalence of ~40% in the overall population [16]. PfCRT is a transmembrane protein that localizes to the parasite digestive vacuole, the site of CQ action [17]. Increased acidification of this vacuole associates with PfCRT mutations and...
CQR [15]. Therefore, the question arises as to whether mutations in an orthologue of pfcr may be similarly responsible for CQR in P. vivax.

The genus Plasmodium comprises deeply branched clades of what are considered to be 3 major evolutionary groups. Representative members of these groups include the following: P. falciparum, the closely related ape parasite P. reichenowi, and avian malaria parasites, such as P. gallinaceum; P. vivax and monkey malaria, such as P. knowlesi; and rodent malaria parasites, such as P. berghei, P. chabaudi, and P. yoelii [18]. Major differences in host specificity and disease manifestations occur among species of these groups, as do dramatic variations in genome composition and codon usage [19].

Here we describe pfcr homologues from P. vivax, P. knowlesi, and P. berghei and a pfcr homologue from the slime mold Dictyostelium discoideum, and present evidence for different mechanisms of CQR in P. falciparum and P. vivax.

Materials and Methods

Preparation of polymerase chain reaction (PCR) templates from blood samples. P. vivax-infected monkey red blood cells were lysed and washed with Tris-EDTA buffer (10 mM Tris-HCl and 1 mM disodium EDTA [pH 7.6]) and RCLB solution (1 M sucrose, 10 mM Tris-HCl [pH 7.6], 5 mM MgCl₂, and 1% [vol/vol] Triton X100 in H₂O). Pellets were resuspended in DSP (20 mM KCl, 2.5 mM MgCl₂, 1 g/L proteinase K, and 0.5% [vol/vol] Tween 20) and were incubated at 56°C for 2 h and then at 90°C for 10 min. Two microliters of this solution was used for each PCR assay. Dried blood samples from transmigrated Javanese patients infected with P. vivax were sectioned into 3-mm² pieces and were fixed with methanol for 15 min at room temperature. After drying, the pieces were soaked in 50 µL of H₂O₂ and 5 µL of the recovered solution was used for each PCR reaction.

Isolation of pfcr homologues from D. discoideum, P. knowlesi, P. vivax, and P. berghei. PCR amplifications were performed using standard reagents and 50 ng of genomic DNA or 0.1 µL of heat-denatured DNA from cDNA or genomic DNA libraries as template. Extension temperatures were 64°C for P. knowlesi DNA and 72°C for P. vivax DNA. The D. discoideum clone su662 (GenBank accession nos. AU076370 and C83926) was identified by the basic local alignment search tool (BLAST) screening of the National Center for Biotechnology Information (NCBI) databases (http://www.ncbi.nlm.nih.gov/BLAST) and was obtained from Hideko Urushihara (Institute of Biological Sciences, University of Tsukuba, Japan) for sequencing.

PCR amplifications with 4 different primer pairs were used to identify the P. knowlesi orthologue pckg10. PCR primer pairs BF92 (5'-GCT TTT CAA ACA TGA CAA GGG-3') and BB103C (5'-TTG CTG GAC CTT GTA TAC AAC TAA C-3'), which were designed from exons 5 and 10 of pfcr, respectively, amplified a 0.5-kb cDNA fragment encoding a central part of pckg10 from an erythrocytic-stage P. knowlesi hg11 cDNA library [20]. Primer KB1 (5'-CCC AAT CCA CAG TTC TCC ACA ATA G-3'), which was designed from the sequence of the first product, and primer AF12B (5'-GGT AAC TAT AGT TTT GTA ACA TCC G-3'), which was designed from pfcr exon 2, amplified a further 0.6-kb cDNA fragment from pckg10. Primer K487 (5'-GAA TGT TTC CAG TGG TTC TTG TGA GG-3'), which was designed from the aforementioned 0.6-kb cDNA fragment, and the vector-specific primer GT11F3 (5'-TAT GGG GAT TGG TGG CGA CGA CTC C-3') amplified the 5' untranslated sequence of the P. knowlesi orthologue. Primer KAF22 (5'-GGC ACG ATT GTG AAC GAG CAT GG-3'), which was designed from the first (0.5 kb) fragment, and the vector-specific primer GT11F3 (5'-TAT GGG GAT TGG TGG CGA CGA CTC C-3') amplified the 3' untranslated region (UTR) of pckg10.

PCR amplifications and genomic library screening were used to identify the P. vivax orthologue pvcg10. Primers KF4 (5'-CCC TTC TCG GAA ATC GGA ACG-3') and KB2 (5'-CAA TCG TCG CAC ATC TTG G-3') were designed from the pckg10 sequence and were used to amplify a 0.3-kb genomic DNA fragment spanning exons 8 and 9 from DNA of P. vivax Salvador I (Sal I) line. This fragment was used to probe and to identify a 6-kb HindIII insert from a P. vivax Salvador I genomic DNA library [21]. The 6-kb DNA insert spanned exons 6–14 and the 3' UTR of the P. vivax orthologue. Primers K6F (5'-GAT GAA CGT TCG GAG G-3') and K6B45 (5'-GCA ATG ATA ACT GAG CAG CCG GAG G-3') were designed from the pvcg10 sequence and were used to amplify genomic sequence containing exons 1–3 of pvcg10. Primers VF220 (5'-GCA GGA GAG ACA CCG AAA C-3') and VK2B4 (5'-ATC GGA AGC ATC ATG CAG CAG G-3') were used to amplify a fragment containing exons 3-6 of pvcg10. Primer VB2 (5'-TGC GTC TCG GAG GTT ACA AAG C-3') and the M13 forward primer M13F1 (5'-CGC CGT CAG GTT TCC AGT CAC GAC-3') were used to amplify a fragment extending into the 5' UTR of pvcg10.

Expressed sequence tag (EST) and genome survey sequence deposits corresponding to P. berghei orthologue pbcg20 were identified by BLAST screening of the University of Florida Plasmodium berghei Gene Sequence Tag Project via the NCBI Malaria Genetics and Genomics World Wide Web pages (http://www.ncbi.nlm.nih.gov/Malaria/). Clones UFL_244PbC09, UFL_056PbB12, and UFL_055PbC06 were obtained and sequenced to obtain the full open-reading frame (ORF) of pbcg20. Sequence data from this work are deposited in the DNA DataBank of Japan, European Molecular Biology Laboratory, and GenBank databases under accession numbers AF314645–AF314649 and AF317500.

Identification of P. vivax orthologues pvcg9, pvcg1, and pvcg4. The 6-kb P. vivax genomic DNA clone that contained exons 6–14 and the 3' UTR of pvcg10 was sequenced further, and ORFs of pvcg9 and pvcg1 were identified. Oligonucleotide primers 5'-TGG ACA ACC ACC CCT TGG ACT CTA CCT-3' and 5'-GCT TTT GCT CTA TTG GCC-3', which originally were designed to amplify isoleucine tRNA synthase from P. vivax, amplified a 1.1-kb fragment from P. vivax North Korea genomic DNA. The fragment was cloned into vector pCR2.1 (Invitrogen), was sequenced from both ends, using primer sites in the vector, and was found by database searches to have homology to pvcg4. Probes for pvcg1 were amplified by use of primer pairs VG1F (5'-CCA TAC ACC AAA TGC GAC TCG G-3') and VGC1B (5'-GCT AAA CAC GAA ACT GAT GAG-3'), and probes for pvcg4 were amplified by use of primer pairs 1474 (5'-ATG TCC GTG CTC GGA...
108 g of Tris base, 54 g of boric acid, and 8.35 g of disodium EDTA
recurrence of parasitemia [14].

whole blood levels of CQ and desethylchloroquine at the time of
of a standard 28-day in vivo drug test, which takes into account
and 2 mg/mL of proteinase K in 0.5
blocks were treated with EPS (1% wt/vol sodium N-lauroylsarcosine
0.5% (wt/vol) agarose (SeaPlaque; FMC BioProducts), and the
of Lyticase (Sigma). The resulting spheroplasts were embedded in
of Giemsa-stained blood films by expert microscopists, using stan-
consistent with malaria. All diagnoses were made by examination
the hyperendemic Bonggo District of coastal Papua, self-reported
Results

Conserved features of a novel family of transporter protein
homologues in P. vivax, P. knowlesi, P.berghei, and D. discoi-
deur. Investigation of homologues from other organisms can reveal regions of the pfcr homologue in P. falciparum also was apparent. Figure 2 shows a schematic diagram of the arrangement of the coding regions in the exons of pfcr and pvcg10. The pvcg10 coding sequences extend across 14 exons, which range from 45 to 266 bp and are interrupted by 13 introns ranging from 114 to 491 bp. The splice sites of 12 of 13 introns in pvcg10 are found at positions identical to those of the 12 introns in pfcr. The additional intron in pvcg10 has no counterpart in pfcr and splits the reading frame that corresponds to pfcr exon 3. The compositional properties of the introns differ dramatically between pfcr and pvcg10, which is consistent with the genome-wide difference among the G+C contents of P. falciparum (~18% G+C) and P. vivax (~45% G+C).

Synteny between P. falciparum and P. vivax pfcr orthologues and nearby genes. Comparative sequence analysis demonstrated a close relationship between pfcr and pvcg10; however, further evidence that these genes are orthologues was desirable. Therefore, syntenic relationships were investigated between the genes neighboring pfcr and pvcg10 in the P. falciparum and P. vivax chromosomes. First, partial sequencing of the 6-kb P. vivax genomic library clone, from which exons 6–14 of pvcg10 were identified, was used to identify 2 ORFs 4-kb downstream of pvcg10, in the same position as the P. falciparum pfcg9 and pfcg1 genes relative to pfcr (figure 2). Translation of the pvcg9 and pvcg1 ORFs yielded amino acid sequences with 32% and

pfcr homologue, which we termed pfcg10 (figure 1). Conserved
regions of this homologue, in addition to pfcr, then were employed to obtain a complete genomic sequence of a pfcr homologue of P. vivax. Initial amplifications of genomic DNA produced probes that were used to screen a P. vivax genomic DNA library. Analysis of these fragments identified the full P. vivax coding sequence of a pfcr homologue, which we term pvcg10. Partial sequence of a pfcr homologue of the rodent malaria parasite P. berghei, pbcg10, was identified through a search of the University of Florida Gene Sequence Tag Project databases [28]. Representative cDNA and genomic clones were obtained and sequenced in their entirety, to yield the complete pbcg10 coding sequence (figure 1).

Comparative alignments of the amino acid sequences transla-
ted from pfcr, pvcg10, pbcg10, and D. discoideum clone ssab22 show striking conservation in overall composition and structural features (figure 1). Consensus prediction indicates that these proteins have 10 transmembrane segments, which are conserved in spacing and orientation. The trans-
membrane helix-end motifs are consistent with a model in which the N- and C-termini of the proteins are located on the cytoplasmic side of the membrane. Motif searches showed no evidence for the presence of a typical signal sequence or other recognizable feature, such as an ATP-binding motif. These properties suggest that PfCRT, PvcG10, PkCG10, PbcG10, and SSA662 are members of a previously undescribed family of transporter proteins.

Striking conservation in the positions of intron-exon junctions inferred from the genomic sequences of pfcr and pvcg10 was apparent. Figure 2 shows a schematic diagram of the arrangement of the coding regions in the exons of pfcr and pvcg10. The pvcg10 coding sequences extend across 14 exons, which range from 45 to 266 bp and are interrupted by 13 introns ranging from 114 to 491 bp. The splice sites of 12 of 13 introns in pvcg10 are found at positions identical to those of the 12 introns in pfcr. The additional intron in pvcg10 has no counterpart in pfcr and splits the reading frame that corresponds to pfcr exon 3. The compositional properties of the introns differ dramatically between pfcr and pvcg10, which is consistent with the genome-wide difference among the G+C contents of P. falciparum (~18% G+C) and P. vivax (~45% G+C).

Synteny between P. falciparum and P. vivax pfcr orthologues and

Pulsed-field gel electrophoresis (PFGE). Yeast harboring yeast
artificial chromosome (YAC) A8 [22] was incubated in a sorbitol
solution (0.1 M disodium EDTA, 0.1 M Tris–HCl [pH 8.0], and 0.9
M sorbitol in H2O) with 28 mM β-mercaptoethanol and 1000 U/mL
of Lyticase (Sigma). The resulting spheroplasts were embedded in
0.5% (wt/vol) agarose (SeaPlaque; FMC BioProducts), and the

P . knowlesi
homologues in representatives of 3 deeply branched evo-

 Sequence database searches

P . falciparum pfcrt
dramatically between

P . falciparum
Synteny between

P . falciparum
homologues in the
germs of the genus Plasmodium and a more distant homologue from D. discoideum. Sequence database searches using BLAST programs [24, 25] gave a significant match between part of the P. falciparum pfcr coding sequence and 2 partial cDNA sequences from the D. discoideum cDNA project (GenBank accession nos. AU07268 and C83926) [26]. Inspection of the amino acid sequence encoded by these 2 ESTs indicated potential similarities to the structure of the PfCRT C-terminal region. Therefore, the full-length coding region from one of the corresponding D. discoideum cDNA clones, ssab622, was determined. The predicted SSA662 amino acid sequence from this coding region demonstrated homology with PICRT along its entire length (figure 1).

To identify pfcr homologues in representative species of the
3 evolutionary branches of Plasmodium, we first used codon-
adjusted primers from the pfcr/ssab622 alignment to amplify
fragments from a P. knowlesi blood-stage cDNA library. Analy-
ysis of these cDNA fragments identified an ORF encoding a
Figure 1. Comparison of the predicted sequences for PfCRT (clone HB3) and its homologues PvCG10 (Salvador I), PkCG10, PbCG10, and Dictyostelium discoideum (D.disc) SSA662. Matching amino acids across all species are shaded darkly, whereas matching amino acids in >3 species are shaded lightly. Lines over sequences indicate putative transmembrane segments predicted by TMHMM [27].

39% amino acid identity to the predicted PfCG9 and PfCG1 sequences, respectively (data not shown). A third partial sequence of a P. vivax gene, pvcg4, also was recognized in a serendipitous product in separate PCR amplifications of genomic DNA. The amino acid translation from pvcg4 showed 75% identity with the predicted sequence from pfcg4 over 105 residues (data not shown). This relationship provided another probe to investigate synteny, since pfcg4 is located ∼5 kb from pfcrt on P. falciparum chromosome 7 [15].

To confirm synteny in the organization of these P. vivax and P. falciparum genes, a YAC library containing large inserts of P. vivax DNA [22] was screened with PCR primer pairs specific for pvcg10. A clone identified by this screen, YAC A8, was found to harbor a 350-kb insert that hybridized to the separate pvcg10, pvcg4, and pvcg1 probes (figure 3). These results established the presence of syntenic relationships upstream and downstream of pfcrt and pvcg10. Given this, their close homology, and the almost identical intron-exon organization of these genes, we conclude that pfcrt and pvcg10 are true orthologues within this family of transporter genes.

PvCG10 mutations are not associated with CQR in monkey-adapted P. vivax isolates. In contrast to the case for P. falciparum, P. vivax cannot be consistently maintained in vitro [29]. Practicable in vitro drug susceptibility assays on cultivated parasite lines are therefore not possible. Instead, the resistance status of the parasite is usually determined from patients' clinical responses or from in vivo responses of adapted lines maintained in monkeys or chimpanzees. Therefore, we studied 14 isolates of P. vivax maintained at the Centers for Disease Control and Prevention (CDC) by serial passage in monkeys (table 1).
XIX/CDC *P. vivax*, was isolated from patients in Papua and was resistant to 15 mg/kg of CQ administered over 3 days [30]. The third strain, Indonesia I/CDC, was isolated from a patient on the island of Nias. CQ treatment [3] of the patient was unsuccessful, and the strain was adapted to growth in *Aotus* monkeys, in whom it was found to be resistant to treatment with 15 mg/kg of CQ given as a single dose [32]. The resistant phenotypes of these 3 strains are in direct contrast to the sensitive phenotypes of the 11 strains listed in table 1, which were collected before successful CQ treatment of patients.

The *pvcg10* coding sequences of these isolates were compared. The 14 exons of 2 CQ-resistant (Indonesia XIX and AMRU-1) and 2 CQ-sensitive (Chesson and Salvador I) strains were sequenced in their entirety. The only nonsynonymous point mutations identified were at amino acid positions 34 and 38 (Chesson) and 384 (AMRU-1). Therefore, exons containing codons 34 and 38 were sequenced in the 10 remaining isolates. These exons showed identical *pvcg10* haplotypes (table 2). These results demonstrate a lack of association between codon mutations in *pvcg10* and in vivo CQ susceptibility of the *P. vivax* monkey-adapted lines.

PvCG10 mutations are not associated with CQR in *P. vivax* patient isolates from Papua. To test further our PvCG10 mutation findings, we sequenced *pvcg10* alleles of *P. vivax* obtained from patients who lived in an endemic area and for whom CQ treatment in vivo had failed. Stringent criteria are necessary to make definitive pronouncements of in vivo resistance to therapeutic levels of CQ. These criteria include supervision of the appropriate dose of CQ, monitoring of parasitemia, and the demonstration of parasites in the presence of CQ blood levels that are greater than the minimally effective concentration (100 ng/mL for *P. vivax*) derived from CQ-sensitive strains of this parasite [14]. Using these criteria, 8 *P. vivax* isolates were obtained from Papuan patients with CQ-sensitive or -resistant infections. Four of these infections were classified as clinically resistant, 3 as clinically sensitive, and 1 as probably resistant, because the measured blood level of 85 ng/mL was below the formal cutoff of 100 ng/mL (table 3).

The sequences of all exons of *pvcg10* were determined for 2 resistant (CL002 and CL004), 1 sensitive (CL007), and the 1 probably resistant sample (CL003). No new nonsynonymous mutations were found in these sequences. In light of these results, the re-
mainder of the samples were sequenced for exons containing codons 34, 38, and 384 (table 2). The results confirm no identifiable association between codon mutations in *pvcg10* and CQ susceptibility. All patient blood samples showed identical *pvcg10* haplotypes except sample CL002, which showed a Leu→Phe change at position 384, which was similar to the AMRU-1 monkey-adapted strain. In addition, a silent mutation in codon 343 that codes for Thr distinguished all 8 patient blood samples (ACC) from all 14 monkey-passaged isolates (ACG; data not shown).

Ancestral haplotype of CRT homologues inferred from species of Plasmodium. Is there further evidence that points to the lack of a role for *pvcg10* codon mutations in clinically CQ-resistant *P. falciparum*? The identification and sequencing of the complete coding sequence of 3 PICRT homologues, in conjunction with mutation data from CQ-resistant and -sensitive clones of *P. falciparum* [15], can be used to infer the ancestral *Plasmodium* gene haplotype listed in table 4. All CQ-resistant *P. falciparum* strains from Asia, Africa, and South America analyzed thus far show distinct *pfcrt* alleles that differ from this canonical, sensitive allele by ≥4 point mutations; amino acid changes encoded by these mutations consistently include K76T and A220S. These mutant alleles in CQ-resistant strains of *P. falciparum* thus show different instances of deviations from the ancestral CRT haplotype, which is indicative of strong selective pressure from CQ at this locus. By contrast, the CQ-sensitive and -resistant strains of *P. vivax* show little deviation from the inferred ancestral CRT haplotype. This difference in the mutation of orthologous genes from 2 different species is supportive of a different genetic mechanism of CQR in *P. vivax*.

Discussion

Despite comparable selection pressure from drug use, CQR in *P. vivax* has been reported only since 1989, whereas CQR in *P. falciparum* was evident in the late 1950s from separate foci in South America and Southeast Asia [46]. This history may reflect basic differences in the genetic determinants and molecular mechanisms of CQR in *P. falciparum* and *P. vivax*, which is a hypothesis supported by the results described in this study.

Table 1. Origin, isolation, and chloroquine (CQ) response data for 14 lines of monkey-adapted *Plasmodium vivax*.

<table>
<thead>
<tr>
<th>Line or sample</th>
<th>Country</th>
<th>Isolation and monkey adaptation</th>
<th>In vivo CQ phenotype; reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia XIX</td>
<td>Indonesia</td>
<td>Collins et al. [30]</td>
<td>R; Collins et al. [30]</td>
</tr>
<tr>
<td>AMRU-1</td>
<td>Papua New Guinea</td>
<td>Obaldia et al. [31]; Riekemann et al. [1]</td>
<td>R; Obaldia et al. [31]</td>
</tr>
<tr>
<td>Indonesia I/CDC</td>
<td>Indonesia, Papua New Guinea</td>
<td>Collins et al. [32]; Schwartz et al. [3]</td>
<td>R; Collins et al. [32]</td>
</tr>
<tr>
<td>Chesson</td>
<td>Papua New Guinea</td>
<td>Collins et al. [33]; Ehrman et al. [34]</td>
<td>S; Schmidt [35]</td>
</tr>
<tr>
<td>Salvador I</td>
<td>El Salvador</td>
<td>Collins et al. [36]; Contacos et al. [37]</td>
<td>S; Contacos et al. [37]</td>
</tr>
<tr>
<td>New Guinea I/CDC</td>
<td>Papua New Guinea</td>
<td>Collins et al. [38]</td>
<td>S; Collins (unpublished)</td>
</tr>
<tr>
<td>New Guinea IV/CDC</td>
<td>Papua New Guinea</td>
<td>Collins (unpublished)</td>
<td>S; Collins (unpublished)</td>
</tr>
<tr>
<td>Sumatra</td>
<td>Sumatra</td>
<td>Collins (unpublished)</td>
<td>S; Collins (unpublished)</td>
</tr>
<tr>
<td>Palo Alto</td>
<td>Vietnam</td>
<td>Collins et al. [38]; Meagher and Geiman [39]</td>
<td>S; Schmidt [35]</td>
</tr>
<tr>
<td>North Korea</td>
<td>North Korea</td>
<td>Collins et al. [40]</td>
<td>S; Collins (unpublished)</td>
</tr>
<tr>
<td>Thai III</td>
<td>Thailand</td>
<td>Collins et al. [41]</td>
<td>S; Collins (unpublished)</td>
</tr>
<tr>
<td>India VII</td>
<td>India</td>
<td>Collins (unpublished)</td>
<td>S; Collins (unpublished)</td>
</tr>
<tr>
<td>Brazil I/CDC</td>
<td>Brazil</td>
<td>Nayar et al. [42]</td>
<td>S; Nayar et al. [42]</td>
</tr>
<tr>
<td>Mauritania I</td>
<td>Mauritania</td>
<td>Collins et al. [43]</td>
<td>S; Collins (unpublished)</td>
</tr>
</tbody>
</table>

NOTE. CDC, Centers for Disease Control and Prevention; R, resistant; and S, sensitive (as described in the text).

Table 2. *PvCG10* mutations and in vivo chloroquine (CQ) response phenotypes of *Plasmodium vivax* lines from monkey and human infections.

<table>
<thead>
<tr>
<th>Line or sample</th>
<th>Amino acid position codon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Monkey adapted</td>
<td></td>
</tr>
<tr>
<td>Indonesia XIX</td>
<td>R</td>
</tr>
<tr>
<td>AMRU-1</td>
<td>R</td>
</tr>
<tr>
<td>Indonesia I</td>
<td>R</td>
</tr>
<tr>
<td>Chesson</td>
<td>S</td>
</tr>
<tr>
<td>Salvador I</td>
<td>S</td>
</tr>
<tr>
<td>New Guinea I/CDC</td>
<td>S</td>
</tr>
<tr>
<td>New Guinea</td>
<td>S</td>
</tr>
<tr>
<td>Sumatra</td>
<td>S</td>
</tr>
<tr>
<td>Palo Alto</td>
<td>S</td>
</tr>
<tr>
<td>Thai III</td>
<td>S</td>
</tr>
<tr>
<td>India VII</td>
<td>S</td>
</tr>
<tr>
<td>North Korea</td>
<td>S</td>
</tr>
<tr>
<td>Brazil I/CDC</td>
<td>S</td>
</tr>
<tr>
<td>Mauritania I</td>
<td>S</td>
</tr>
<tr>
<td>Patient blood samples (Papua)</td>
<td></td>
</tr>
<tr>
<td>CL002</td>
<td>R</td>
</tr>
<tr>
<td>CL004</td>
<td>R</td>
</tr>
<tr>
<td>CL026</td>
<td>R</td>
</tr>
<tr>
<td>CL029</td>
<td>R</td>
</tr>
<tr>
<td>CL003</td>
<td>PR</td>
</tr>
<tr>
<td>CL007</td>
<td>S</td>
</tr>
<tr>
<td>CL001</td>
<td>S</td>
</tr>
<tr>
<td>CL020</td>
<td>S</td>
</tr>
</tbody>
</table>

NOTE. Underlined isolates were sequenced for all exons of *pvcg10*. Residues and bases in boldface represent identified polymorphic sites. CDC, Centers for Disease Control and Prevention; R, resistant to CQ in vivo; S, sensitive to CQ; PR, probably resistant to CQ (see table 3).
and pvcg10 differ tremendously in codon usage and A/T content. These observations attest to a remarkable maintenance of gene structure and conservation of gene function, despite the dramatic differences in nucleotide content that have arisen since the evolutionary divergence of *P. falciparum* and *P. vivax*.

The concept of different molecular mechanisms underlying a common drug resistance phenotype is not an unusual scenario among microorganisms. In bacteria, for example, despite the fact that target similarities enable certain antimicrobial drugs to act in a fairly uniform fashion regardless of the species, the mechanisms of resistance employed by different species of bacteria to a single drug vary widely [49]. *Plasmodium* species exhibit variations in the length of time for drug resistance to develop [50], in physiologic versus genetic resistance [51], and in the genetic predisposition toward development of resistance [52]. Some of these variations may reflect different features in *Plasmodium* biology that allow for 1 mechanism of resistance to be favored in 1 species but not in another. Of interest, the mechanism of resistance to the antifolate pyrimethamine appears to be similar among most species studied thus far: resistance in *P. falciparum* and in the rodent malarial *P. berghei*, *P. chabaudi*, and *P. yoelii* [53] and, more recently, in *P. vivax* [54] involves point mutations in the dihydrofolate reductase drug target. Analysis of the *P. vivax* cg10 gene presented here is evidence for a unique molecular mechanism of CQR in this important species. Further progress in the development of a continuous culture system and in genetic analysis of *P. vivax* will be required to support further investigations of the CQR mechanism in this species.

Identification of *pfcr* homologues in *P. falciparum*, *P. vivax*, and *Plasmodium* species used as model systems for malaria (primate and rodent) should aid investigations into the natural function of these genes. The distantly related *ssa662* gene of *D. dictyostelium* also may provide useful insights into the *pfcr* homologues, although the value of such insights would necessarily be based on the manipulation of shared functional properties in this organism. In turn, experiments directed to the natural role of the *pfcr* homologues can be expected to help clarify the function of *pfcr* itself.

Table 3. Eight-day in vivo chloroquine (CQ) susceptibility results for 8 Javanese transmigrants living in Papua presenting with *Plasmodium vivax* malaria.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Parasites/μL at day 0</th>
<th>Recurrenceb (day after CQ therapy)c</th>
<th>Parasites/μL on day of recurrence</th>
<th>CQ + DCQ blood level, ng/mLd</th>
<th>In vivo phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL002</td>
<td>4000</td>
<td>Yes (7)</td>
<td>360</td>
<td>185</td>
<td>R</td>
</tr>
<tr>
<td>CL004</td>
<td>4720</td>
<td>Yes (14)</td>
<td>560</td>
<td>115</td>
<td>CQ sensitive</td>
</tr>
<tr>
<td>CL026</td>
<td>5600</td>
<td>Yes (14)</td>
<td>200</td>
<td>190</td>
<td>R</td>
</tr>
<tr>
<td>CL029</td>
<td>2120</td>
<td>Yes (18)</td>
<td>240</td>
<td>145</td>
<td>R</td>
</tr>
<tr>
<td>CL003</td>
<td>5560</td>
<td>Yes (28)</td>
<td>280</td>
<td>85</td>
<td>PR*</td>
</tr>
<tr>
<td>CL001</td>
<td>560</td>
<td>No</td>
<td>—</td>
<td>—</td>
<td>S</td>
</tr>
<tr>
<td>CL007</td>
<td>2880</td>
<td>No</td>
<td>—</td>
<td>—</td>
<td>S</td>
</tr>
<tr>
<td>CL020</td>
<td>600</td>
<td>No</td>
<td>—</td>
<td>—</td>
<td>S</td>
</tr>
</tbody>
</table>

NOTE: DCQ, desethylchloroquine; PR, probably resistant to CQ; R, resistant to CQ; S, sensitive to CQ.

* a Calculated as 40 × (average no. of parasites per 200 leukocytes), assuming 8000 leukocytes/μL.

* b Presence of parasites that may be due to relapse, recrudescence, or reinfection.

* c Patients received standard CQ therapy of 25 mg base/kg body weight on day 0.

* d Levels of CQ and its major metabolite, DCQ, were determined by high-performance liquid chromatography [45] from samples obtained the day recurrence was identified.

* e Classified as PR because the measured CQ blood level of 85 ng/mL was below the normal cutoff of 100 ng/mL.

The structure and organization of the *pfcr* orthologues in *P. falciparum* and *P. vivax* described here are highly informative, as these 2 species are phylogenetically distant and are responsible for most malaria worldwide [47, 48]. The orthologues have a highly interrupted gene structure, with splice junctions at 12 sites, and in the rodent malarias *P. berghei*, *P. chabaudi*, and *P. yoelii* [53] and, more recently, in *P. vivax* [54] involves point mutations in the dihydrofolate reductase drug target. Analysis of the *P. vivax* cg10 gene presented here is evidence for a unique molecular mechanism of CQR in this important species. Further progress in the development of a continuous culture system and in genetic analysis of *P. vivax* will be required to support further investigations of the CQR mechanism in this species.

Table 4. Ancestral haplotype of PfCRT inferred from polymorphisms in *Plasmodium* species.

<table>
<thead>
<tr>
<th>Amino acid position, PICRT numbering</th>
<th>Species</th>
<th>72</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>97</th>
<th>220</th>
<th>271</th>
<th>326</th>
<th>356</th>
<th>371</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. falciparum</td>
<td>C</td>
<td>M</td>
<td>N</td>
<td>K</td>
<td>H</td>
<td>A</td>
<td>Q</td>
<td>N</td>
<td>I</td>
<td>R</td>
</tr>
<tr>
<td>(canonical form)</td>
<td>P. falciparum</td>
<td>C</td>
<td>M</td>
<td>N</td>
<td>K</td>
<td>H</td>
<td>A</td>
<td>Q</td>
<td>N</td>
<td>I</td>
<td>R</td>
</tr>
<tr>
<td>(Old and New World forms)</td>
<td>P. vivax, CQ sensitive and CQ resistant</td>
<td>C</td>
<td>M</td>
<td>N</td>
<td>K</td>
<td>H</td>
<td>S</td>
<td>Q</td>
<td>N</td>
<td>I</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>P. knowlesi, CQ sensitive</td>
<td>C</td>
<td>M</td>
<td>N</td>
<td>K</td>
<td>H</td>
<td>S</td>
<td>Q</td>
<td>N</td>
<td>I</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>P. berghei, CQ sensitive</td>
<td>C</td>
<td>M</td>
<td>N</td>
<td>K</td>
<td>H</td>
<td>A</td>
<td>E</td>
<td>N</td>
<td>I</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Inferred ancestral haplotype</td>
<td>C</td>
<td>M</td>
<td>N</td>
<td>K</td>
<td>H</td>
<td>A/S</td>
<td>I/Q</td>
<td>N</td>
<td>I</td>
<td>R</td>
</tr>
</tbody>
</table>

NOTE: Residues marked in boldface differ from the inferred ancestral haplotype. CQ, chloroquine.

* From Fidock et al. [15].
Acknowledgments

We are grateful to the Dictyostelium cDNA Project in Japan for receipt of clone ssas662. We thank Jingtiao You and Jianbing Mu (National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD) and Michelle Fluegge (College of Veterinary Medicine, University of Florida, Gainesville) for technical support; Brenda Rae Marshall for editorial assistance; and the National Institute of Health Research, Ministry of Health, the Republic of Indonesia for assistance and guidance in the conduct of the studies in Papua.

References

strain of *Plasmodium vivax* from Brazil in Aotus and Saimiri monkeys. *J Parasitol* 1997;83:739–45.

