
The SVMclassifier has been used extensively in numerousfields of re-
search, including remote sensing (Huang et al., 2008, 2011; Zhang and
Ma, 2008; Zhu and Blumberg, 2002). It can provide reliable classification

results for remote sensing applications, which has been confirmed by
various studies. Detailed descriptions and explanations of the concept
of SVM can be found in Burges (1998); Cristianini and Shawe-Taylor

b) After flood subset image view acquired at 00:55 on March 26, 2010  

a) Before flood subset image view acquired at 01:25 on March 26, 2009

Fig. 4. MODIS Terra reflectance composite image view for the channel country flood case. Channel 1 (R), channel 2 (G), channel 3 (B) is shown in composite.

491R. Zhang et al. / Remote Sensing of Environment 123 (2012) 483–495



(2000); Vapnik (2000). Compared to traditional classifiers, the SVM
does not assume distributions of the input data, as does maximum
likelihood, and it does not require a complicated process for parameters
tuning, such as in neural networks. In addition, the decision tree classi-
fier is not selected in this step to avoid possible correlations between
the detected results using the decision tree based algorithm and the
generated true flood maps.

Because only the red channel and one near-infrared channel are
presented in 250 m MODIS images, five predictors are involved in
the classification: channel 1, channel 2, channel 2- channel 1, channel
2/channel 1, and the NDVI. To ensuremapping accuracies, MODIS 250 m
reflectance images and MOD44W data were projected into the UTM
coordination system. For the tested case 1 and case 3, UTM zone 42 N
was applied, and UTM zone 54 S was used in case 2.

The confusion matrix (Congalton and Mead, 1983; Kohavi and
Provost, 1998) was employed as themeasure of classification accuracy,
and the flood, permanent water, and land classes were included in the
confusionmatrices. The commission and omission errors of the detected
floodpixelswere also presented. To reduce the statistical bias, only cases
that possess more than or approximately 10000 detected flood pixels
were selected in the validations.

4.1. Case 1: Flooding in Balochistan

In the summer of 2010, a serious flood from the Indus River, which
flows through the provinces of Punjab and Sindh, hit the Balochistan
Province of Pakistan (NASA, 2010a). 1 km MODIS Aqua data acquired
on August 28, 2010, were used to detect this flood. The non-flood image
acquired on August 28, 2009, was also collected for comparison. Before
and after flood reflectance images are presented in Fig. 2 (a) and (b), re-
spectively, and the flood detection map is shown in Fig. 3, in which the

red pixels denote floods, green areas are land, permanent water bodies
are marked in blue, and clouds are white. The confusion matrix is
presented in Table 6.

4.2. Case 2: Flooding in Channel Country

Floodwaters traveled southward in Australia's Channel Country in
late March, 2010. Earlier in the month, flooding forced authorities to
declaremost of Queensland a natural disaster area and caused hundreds
of millions of dollars’worth of damage. By the end of the month, flood-
waters filled channels in the south while receding from some areas to
the north (NASA, 2010b).

1 km MODIS Terra data acquired on March 26, 2010, were used to
detect this flood. The non-flood image acquired on March 26, 2009,
was also collected for comparison. Before and after flood reflectance
images are presented in Fig. 4 (a) and (b), respectively, and the flood
detection map is shown in Fig. 5. The confusion matrix is presented in
Table 7.

4.3. Case 3: High waters along the Pakistan-India Border

Just inland from the Arabian Sea, wetlands line the border between
Pakistan and India. Water levels rise and fall with the seasons, but after
weeks of devastatingmonsoon rains that displacedmillions of Pakistanis,
water levels in the typically shallow lakes stayed high in late summer
2010 (NASA, 2010c).

1 kmMODIS Terra data acquired on September 23, 2010, were used
to detect this flood. The non-flood image acquired on September 23,
2009, was also collected for the comparison. Before and after flood re-
flectance images are presented in Fig. 6 (a) and (b), respectively, and

Fig. 5. Color-coded flood detection map for the channel country flood case. Flood (red), land (green), permanent water (blue), and cloud (white) are displayed. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the flood detectionmap is shown in Fig. 7. The confusionmatrix is pres-
ented in Table 8.

Based on the confusion matrices for the three validated flood cases,
all results show high total accuracies. Overall accuracies of 97.47% to
98.84% of indicate that almost all detected pixels are consistent with
those in the reference flood maps. Kappa coefficient values varied be-
tween 0.8246 and 0.9353, which means that the algorithm predicts
high classification accuracy for all three classes with no obvious classifi-
cation bias. Because the kappa coefficient takes into account the agree-
ment that occurs by chance, it is generally perceived as a more stable
measure than a simple percent agreement calculation. The commission

Table 7
Confusion matrix for accuracy for the Channel Country flood.

Class Flood Water Land Total

Flood 8371 38 1263 9672
Water 26 84 8 118
Land 2016 12 164179 166207
Total 10413 134 165450 175997

Overall accuracy=(172634/175997) 98.0892%.
Kappa coefficient=0.8246.
Flood commission error=(1301/9672) 13.45%.
Flood omission error=(2042/10413) 19.61%.

a) Before flood subset image view acquired at 06:25 on September 23, 2009

b) After flood subset image view acquired at 05:55 on September 23, 2010

Fig. 6. MODIS Terra reflectance composite image view for the Pakistan-India Border flood case. Channel 1 (R), channel 2 (G), channel 3 (B) is shown in composite.
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errors in the validations vary between 6.75% and 21.45%, which indi-
cates that flood pixels are misclassified into other classes. The omission
errors for three flood cases are 12.66%, 19.61% and 9.58%, respectively.
Both commission and omission errors for the test cases are considerably
lower than the required 40% incorrect classification accuracy for flood
identifications. The three area validation results of flood mapping
accuracies suggest that the proposed FSW algorithm also meets re-
quirements of flood detection accuracy.

Several factors could explain the obtained commission and omission
errors. 1) Due to the limitation of the sensor's capabilities, a portion
of water bodies covering small areas are difficult to be distinguished
from 1 km remote sensing images. 2) During flood events, a portion of
water pixels show relatively high reflectance values owing to different
water constituents, such as high debris concentration. These flood
water pixels tend to bemixedwith lands. 3) The change of soilmoisture
in land surfaces close to water bodies during flood events makes it dif-
ficult to separate land pixels with water because of reflectance changes.
4) Due to the tradeoff between the final classification accuracy and the
complexity of the decision tree model, the applied tree structure is
pruned and the decision rules are simplified, whichmay introducemis-
classifications for some flood pixels in predictions. There are two main
reasons to perform tree pruning. One is to avoid possible model over-
fitting, which is typically caused by a very complicated training model,
and then to achieve a better generalization ability. Second is to reduce

the classification time, which is proportional to the complexity of the
applied model.

In these experiments, the running time of the algorithm was also
recorded. Because the prediction process of a decision tree classification
is relatively simple, the proposed procedure is fast. In the test cases, the
program is able to produce flood detection maps within 15 seconds
when MODIS proxy data is used as the input, which is much faster than
the required 60 minutes in the operational environment. Even though
the volume of a fulldisk image of future ABI data is larger than a MODIS
1 km granule image, the program is predicted to generate the product
in 10 minutes. The running time measurements demonstrate that the
proposed algorithm meets the computational requirement of the flood
and standing water product.

The proposed FSW detection algorithm has also been utilized in real
world applications. A flash flood caused by a tsunami, which followed
the massive earthquake that stuck northeastern Japan on March 11,
2011, was analyzed by the FSW algorithm as a rapid response to that di-
saster (NOAA, 2011b). The preliminary detection results for this flood
event showed that most tsunami affected areas were accurately identi-
fied through a visual inspection. This case verified the effectiveness and
usability of the proposed FSW algorithm in a real flood application.

5. Conclusion

In this paper, the validation process for the GOES-R flood and stand-
ing water product was described. The proposed algorithm using the
C4.5 decision tree classification algorithm was also briefly described.
The algorithm was validated using the MODIS 1 km reflectance data
as the proxy in the development phase. Two types of validations, a sta-
tion point validation and an image area validation,were also included in
this study.

In the first level of validation, the sensitivity of the selected channels
and the applicability of the proposed algorithm were validated using
gauging station data. 79.71% of the flood events detection rate calculated
on 34 flood cases was achieved. The validation results indicate that the
selected predictors and classification algorithm are capable of detecting
floods based on 1 km MODIS data. In the second level of the validation

Fig. 7. Color-coded flood detection map for the Pakistan-India Border flood case. Flood (red), land (green), permanent water (blue), and cloud (white) are displayed. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 8
Confusion matrix for accuracy for the Pakistan-India Border flood.

Class Flood Water Land Total

Flood 8782 332 2066 11180
Water 231 23699 229 24159
Land 699 63 107091 107853
Total 9712 24094 109386 143192

Overall accuracy=(139572/143192) 97.4719%.
Kappa coefficient=0.9353.
Flood commission error=(2398/11180) 21.45%.
Flood omission error=(930/9712) 9.58%.
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process, accuracy evaluations against classified and visual interpreted
referencefloodmapswere performed. The commission and omission er-
rors of the detected flood pixels were less than 25% for all tested cases,
which are significantly less than the required 40% incorrect classification
accuracy.

Not only the flood event detection accuracy that presented in the
first level of the validation, but the flood mapping accuracy given in
the second level of the validation indicates that the proposed FSW
algorithm for the ABI sensors meets the mission's requirement of the
60% correct classification rate. For all test cases in this study, the pro-
posed algorithm shows the effectiveness and robustness in tasks of
flood detection andmapping visually and quantitatively. The FSW algo-
rithm is built on a flexible pattern recognition classification framework,
and detailed decision rules are obtained by training large samples of
water and land collected around the globe, which represent variations
of observed reflectance of ground types. Additionally, the decision
model, which is stored in a tree structure, will be updated along with
routine validations with new data. All these efforts are aimed at the us-
ability of the algorithm for real flood conditions, and we have reason to
believe the proposed algorithm is able to provide sufficient detection
ability for a variety of real flood cases. The application in the Japan tsu-
nami flood case, also confirmed the real world usability of the proposed
FSW algorithm.

In the algorithm validation phase, the proposed two level validation
strategieswill be performed periodically.Moreover, comparisons against
independent flood datasets, for example, the Dartmouth flood observa-
tory (Brakenridge, 2010), will be involved in further developments of
the validation system.
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