2002

“Dichotomies in Silk: Shrinking and Stretching”

Genevieve Dion

Instituto Chileno Norteamericano

Follow this and additional works at: http://digitalcommons.unl.edu/tsaconf

Part of the Art and Design Commons

http://digitalcommons.unl.edu/tsaconf/381

This Article is brought to you for free and open access by the Textile Society of America at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Textile Society of America Symposium Proceedings by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Shibori processes can be used to generate highly-textured surface designs for the production of pure silk garments that permanently retain their form and elasticity. Fabric is first shaped using a variety of traditional stitch-resist shibori techniques on greige goods (untreated fabric) of Japanese Gunma silk, a special fabric with highly over-spun silk filaments. Next, fabric is scoured, causing it to shrink – an effect of the high-twist yarns. In unprotected areas, the textile is permanently pleated, whereas the remaining stitch-resisted and protected areas of the fabric become permanently textured. Texture can further be enhanced through shibori dyeing.

A major consideration in designing garments using the method described above is the fact that the scouring process leads to a sixty percent reduction in the total surface area of the textile. Therefore, it is necessary to calculate how and where this reduction will occur before scouring in order to ensure that the multiple textures and specific design features (i.e. cuffs, collars and waistline), appear at the appropriate and designated positions within the final piece. This technique, unlike that of traditional garment design, involves multiple textures within a continuous piece -- no seams exist between the pleated and stitch-resisted areas. Collectively, the elasticity inherent in the final pieces, coupled with their seamless nature, results in extraordinary fluidity and new possibilities in design.