Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment

Christine L. Goodale
Cornell University, clg33@cornell.edu

Guinevere Fredriksen
Cornell University

Marissa S. Weiss
Cornell University

Carmody K. McCalley
Cornell University

Jed P. Sparks
Cornell University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/natrespapers

Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, and the Other Environmental Sciences Commons

Goodale, Christine L.; Fredriksen, Guinevere; Weiss, Marissa S.; McCalley, Carmody K.; Sparks, Jed P.; and Thomas, Steven A., "Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment" (2015). *Papers in Natural Resources*. 508. https://digitalcommons.unl.edu/natrespapers/508

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Christine L. Goodale, Guinevere Fredriksen, Marissa S. Weiss, Carmody K. McCalley, Jed P. Sparks, and Steven A. Thomas
Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment

CHRISTINE L. GOODALE,1,5 GUINEVERE FREDRIKSEN,1 MARISSA S. WEISS,1,2 CARMODY K. MCCALLEY,1,3 JED P. SPARKS,1 AND STEVEN A. THOMAS1,4

1Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14850 USA
2Harvard Forest, Harvard University, Petersham, Massachusetts 01366 USA
3Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824 USA
4School of Natural Resources, University of Nebraska, Lincoln, Nebraska 68588 USA

Abstract. Seasonal patterns of stream nitrate concentration have long been interpreted as demonstrating the central role of plant uptake in regulating stream nitrogen loss from forested catchments. Soil processes are rarely considered as important drivers of these patterns. We examined seasonal variation in N retention in a deciduous forest using three whole-ecosystem 15N tracer additions: in late April (post-snowmelt, pre-leaf-out), late July (mid-growing-season), and late October (end of leaf-fall). We expected that plant 15N uptake would peak in late spring and midsummer, that immobilization in surface litter and soil would peak the following autumn leaf-fall, and that leaching losses would vary inversely with 15N retention. Similar to most other 15N tracer studies, we found that litter and soils dominated ecosystem retention of added 15N. However, 15N recovery in detrital pools varied tremendously by season, with >90% retention in spring and autumn and sharply reduced 15N retention in late summer. During spring, over half of the 15N retained in soil occurred within one day in the heavy (mineral-associated) soil fraction. During summer, a large decrease in 15N retention one week after addition coincided with increased losses of 15NO$_3^-$ to soil leachate and seasonal increases in soil and stream NO$_3^-$ concentrations, although leaching accounted for only a small fraction of the lost 15N (<0.2%). Uptake of 15N into roots did not vary by season and accounted for <4% of each tracer addition. Denitrification or other processes that lead to N gas loss may have consumed the rest. These measurements of 15N movement provide strong evidence for the dominant role of soil processes in regulating seasonal N retention and losses in this catchment and perhaps others with similar soils.

Key words: Arnot Forest, New York, USA; deciduous forest; 15N tracer; N retention; seasonality; soil fractions; soil nitrogen; stream nitrate.

INTRODUCTION

Processes of forest nitrogen (N) retention have long been inferred from seasonal patterns of stream nitrate (NO$_3^-$) concentration, but these inferences have rarely been directly tested. That is, in most seasonally snow-covered catchments, stream NO$_3^-$ concentrations rise during the dormant season, peak at snowmelt, and then drop to low levels during the growing season (e.g., Stoddard 1994, Wright et al. 2001). This pattern has been broadly attributed to the seasonal pattern and strength of terrestrial plant demand during the growing season (Vitousek and Reiners 1975, Stoddard 1994, Likens and Bormann 1995, Church 1997). However, in some temperate forest watersheds, stream NO$_3^-$ concentrations peak in summer rather than winter, sparking questions on what drives seasonal N retention and loss in these and other catchments (e.g., Mulholland and Hill 1997, Band et al. 2001, Goodale et al. 2009, Brookshire et al. 2011, Ohte 2012). Multiple hypotheses have been proposed to explain high summer NO$_3^-$ concentrations in streamwater, including: contributions from deep groundwater flow paths (Burns et al. 1998, Ohte 2012); summer decreases in catchment wetness, denitrification rates, and hydrologic connectivity (Band et al. 1998, Ohte 2012); and expected summer increases in rates of net nitrification under warmer summer temperatures (Goodale et al. 2009, Brookshire et al. 2011). Seasonal variation of in-stream processes can also affect stream NO$_3^-$, with light-stimulated autotrophic N uptake prior to leaf-out in spring and heterotrophic N uptake induced by organic matter inputs generated by autumn leaf-fall (e.g., Mulholland 2004, Roberts and Mulholland 2007, Goodale et al. 2009, Sebestyen et al. 2014). Improved understanding of the drivers of seasonal patterns of ecosystem N retention should yield new insights relevant for basic understanding of N dynamics and for management of pollutant N losses in streamwater.

Catchment input–output studies can capture the integrated net response of ecosystem N balance;
however, they provide little information about where N is retained or lost (Likens and Bormann 1995, Church 1997). Tracer studies using 15N provide a powerful alternative approach for identifying key ecosystem N retention and loss processes (e.g., Nadelhoffer et al. 1999a, Holub and Lajtha 2004, Perakis et al. 2005). The tracer approach enables quantification of the fate of 15N added to forest ecosystems as measured over various timescales, typically a year or longer for tracer studies that encompass both tree and soil responses (e.g., Tietema et al. 1998, Nadelhoffer et al. 1999b, Templer et al. 2012) or sometimes at finer timescales in small-plot studies focused on soil responses (e.g., Zogg et al. 2000, Perakis and Hedin 2001, Providoli et al. 2006). Other than one small-plot study that contrasted the response of 15N added to mixed pine stands in May and October (Seely and Lajtha 1997), this tracer approach has not yet been used to examine seasonal variation in forest 15N retention and loss pathways, even though temperate forests experience very large seasonal differences in environmental conditions and biological activity that should affect N dynamics and fate.

We examined how 15N retention varied seasonally in a deciduous forest in the headwaters of the Upper Susquehanna Basin in central New York, USA. The region typically develops a winter snowpack, yet streams display NO$_3^-$ peaks during summer rather than during the dormant season (Goodale et al. 2009). Previous measurements of soil and streamwater chemistry led us to hypothesize that soil processes might dominate control of summer NO$_3^-$ peaks in these catchments, with N immobilization in soils and streams stimulated by autumn leaf-fall (Goodale et al. 2009). In this study, we compared 15N retention in spring, summer, and autumn using three sequential whole-ecosystem 15N tracer additions. Frozen conditions precluded a winter comparison. We hypothesized that root 15N uptake would be greatest in late spring and summer corresponding with the periods of plant growth and that soil 15N retention would be greatest in autumn, driven by heterotrophic N uptake fueled by the input of carbon in leaf-fall. We also examined the fate of 15N within two soil fractions (light and heavy) following the first 15N addition in spring, expecting microbial activity to produce greater 15N recovery in the particulate (light) fraction compared to the mineral-associated (heavy) fraction. We expected that gaseous 15N losses to denitrification would be greatest either during the warm summer period (Bohlen et al. 2001) or in the wet soils of spring (Groffman and Tiedje 1989) and that leaching losses would vary inversely with 15N retention in the combined plant and soil pools.

Methods

Site description

The study was conducted within Cornell University’s Arnot Forest, 25 km south of Ithaca, New York, USA. Measurements centered on a 0.25-ha triangular plot that surrounded a perennial spring at the origin of Pine Creek (42°17′ N, 76°8′ W; 503 m elevation; Fig. 1). The plot spanned 50 m across its top, with a center axis that ran 100 m downhill along the creek. The plot was gridded at 10-m intervals to define subplots for tracer application and soil sampling.

Annual (1970–2000) mean temperature at the site averages 7.8°C, with monthly means ranging from ~5.2°C in January to 20.4°C in July (NRCC 2009). Annual precipitation averages 930 mm/yr, with more in summer (93 mm/month) than winter (53 mm/month). Atmospheric N deposition to Connecticut Hill, a long-term monitoring site 14 km north of Arnot Forest, averaged ~10 kg N·ha$^{-1}$·yr$^{-1}$ during 2000–2009, including 6 kg N·ha$^{-1}$·yr$^{-1}$ as wet deposition (52% as NO$_3^-$, 48% as NH$_4^+$), 2 kg N·ha$^{-1}$·yr$^{-1}$ as HNO$_3$ vapor, and 2 kg N·ha$^{-1}$·yr$^{-1}$ as NH$_3$ (Butler et al. 2015).

Vegetation consists of second-growth mixed hardwoods established naturally after harvest in 1873–1887 and fires in 1900–1911 (Fain et al. 1994, Fahey et al. 2013). Soils are somewhat poorly drained Drystrudepts (Seely and Lajtha 1997), this tracer approach has not yet been used to examine seasonal variation in forest 15N retention and loss pathways, even though temperate forests experience very large seasonal differences in environmental conditions and biological activity that should affect N dynamics and fate.

We examined how 15N retention varied seasonally in a deciduous forest in the headwaters of the Upper Susquehanna Basin in central New York, USA. The region typically develops a winter snowpack, yet streams display NO$_3^-$ peaks during summer rather than during the dormant season (Goodale et al. 2009). Previous measurements of soil and streamwater chemistry led us to hypothesize that soil processes might dominate control of summer NO$_3^-$ peaks in these catchments, with N immobilization in soils and streams stimulated by autumn leaf-fall (Goodale et al. 2009). In this study, we compared 15N retention in spring, summer, and autumn using three sequential whole-ecosystem 15N tracer additions. Frozen conditions precluded a winter comparison. We hypothesized that root 15N uptake would be greatest in late spring and summer corresponding with the periods of plant growth and that soil 15N retention would be greatest in autumn, driven by heterotrophic N uptake fueled by the input of carbon in leaf-fall. We also examined the fate of 15N within two soil fractions (light and heavy) following the first 15N addition in spring, expecting microbial activity to produce greater 15N recovery in the particulate (light) fraction compared to the mineral-associated (heavy) fraction. We expected that gaseous 15N losses to denitrification would be greatest either during the warm summer period (Bohlen et al. 2001) or in the wet soils of spring (Groffman and Tiedje 1989) and that leaching losses would vary inversely with 15N retention in the combined plant and soil pools.

Seasonal weather and phenology

The study year of 2007 averaged 0.4°C warmer and 4% wetter than the long-term mean, but provided broadly typical seasonal conditions (Fig. 2). A late 35-cm snowfall occurred in mid-April, two weeks prior to the first tracer addition. The snow melted completely by mid-May, Soils dried throughout May and June, which were 0.8°C warmer than normal with half of normal rainfall. A rainy July followed, so that soils were moist at the time of the second tracer addition; three rainfall events (1.0, 2.5, and 2.1 cm) occurred between day 7 and 30 after this addition (Fig. 2). Late summer conditions were typical, followed by an unusually warm October (+4.5°C) and wet November and December (+40%). Leaf-fall began in late September, occurred primarily in mid-October, and was 90% complete at the time of the third tracer application.

Tracer additions

On 30 April, 31 July, and 30 October 2007, we applied 70 g 15N/ha as 99 atom% 15N-KNO$_3$, along with 1.5 mm of water and an equimolar (0.31 mmol/L) amount of
KBr added as an inert tracer, for cumulative additions of 4.5 mm of water and 0.21 kg N/ha. The total 15N addition amounted to 2% of the mean annual N deposition rate and <0.01% of the total forest N stock to 10 cm. The three dates were chosen to represent conditions of post-snowmelt and pre-leaf-out in spring, mid-growing season in summer, and closely following leaf-fall in autumn. Tracers were applied with a pair of handheld hose sprayers equipped with flow gauges and supplied by a 3785-L (1000 gallon) tank located near the top of the catchment (see Plate 1). Each application was divided into three to five passes per subplot to enhance evenness of distribution, and tracers were applied to the stream surface within the plot at the same areal rate as for the adjacent terrestrial upland.

Field sampling
To examine seasonal variations in the fate of tracer 15N, litter (O i material), surface soil, roots, soil solutions, and stream NO$_3^-$ were all collected before and in an exponential time series after each 15N application. For the spring and summer additions, sample collections occurred the day before (−1) and 1, 2, 7, 30, and 90 days after the 15N addition; for the autumn addition, sampling occurred on days −5, +1, +7, and +21 post-addition. The 90th day after the spring and summer additions also served as the pre-addition sampling date for summer and fall, respectively, for a total of 14 sampling dates in 2007. Snowfall in late November prevented further sampling following the autumn addition.

Fig. 1. (A) Site location (black dot) within the New York, USA portion of the Susquehanna basin; (B) the Pine Creek catchment and the tracer-addition plot (white outlines) displayed on a 2002 orthophoto (conifers, dark; hardwoods, gray); and (C) layout of instrumentation and soil sampling (white blocks) within the tracer-addition plot.
Soil and root samples were collected from 20 central subplots, 87.5–100 m² (Fig. 1). The forest floor was typically absent except for a thin layer of surface litter (the Oi layer). Soils to 10 cm depth below the Oi layer were collected using two 7 cm diameter cores per subplot (n = 40 cores) and included Oe-Oa material in those few cases where it occurred. Oi material was collected from the 7-cm corers for the spring and summer studies and from inside a 20 cm diameter steel pipe in fall. To limit analytical costs, the Oi layer, soil, and associated root samples were composited by subplot from 40 to 20 samples of each type per date. Root samples were further composited by subplot pairs (n = 10) and then sorted into two root classes: fine (<1 mm diameter) and coarse (≥1 mm). Movement of tracer into aboveground litter was quantified by collecting litterfall at ~3-week intervals (4 October, 29 October, and 19 November 2007) from 25 mesh-lined litter baskets, 57.2 × 41.3 cm, distributed across the plot. Baskets were briefly removed during the fall tracer addition to prevent contamination.

To provide some information on N gas losses and belowground biological activity, soil fluxes of N₂O and CO₂ were measured using a closed chamber method in which collars were sealed with an opaque, gas-tight lid fitted with a septum. Eighteen PVC soil collars, each enclosing a 0.065 m² area, were installed to ~3 cm depth in early April 2007, as six sets of three collars, with each set of collars located within 3 m of a set of lysimeters. Soil gases were collected one day before (~1) and 1, 2, 7, 29, and 91 days following the spring addition, days ~1, 0, +1, 2, 14, 32, and 90 following the summer addition, and days ~1, 0, +1, 2, 7, 20 following the autumn addition, for 17 measurement dates. On each date, four gas samples were collected from each chamber over a 2-h period into pre-evacuated 22-mL vials.

Tracer movement to soil water was quantified using 24 lysimeters grouped into six sets of four, which included a pair of shallow (10 cm) zero-tension lysimeters and a pair of deep (50 cm) tension lysimeters, installed in July 2006. Three sets were located on each side of the stream (Fig. 1). The zero-tension lysimeters consisted of a 30.5 cm long by 25.4 cm diameter PVC pipe split in half and capped at one end, draining to a 2-L polyethylene collection bottle placed in a soil pit.
These lysimeters were installed via lateral excavation beneath the top 10 cm of undisturbed soil on the upslope side of the pits, which were then backfilled. The 50-cm lysimeters consisted of SoilMoisture 1900 Series ceramic cup lysimeters (SoilMoisture Equipment, Goleta, California, USA) sampled after sitting for roughly 24 h under 50 kPa of tension applied by a vacuum hand pump. Lysimeter water samples were composited by pair (to six pairs per depth) for chemistry and 15N analyses.

Tracer exports in streamwater were quantified using ISCO automated samplers to collect streamwater at three locations downstream from a perennial spring: at 10 m, nearest the spring; at 86 m, where the stream exited the plot; and at 165 m, below the plot. Inferences of in-stream uptake of 15NO3− were limited to observations of tracer 15NO3−:Br− ratios, constrained further by limited sampling resolution, low Br− levels near or below detection limits, and an instrument malfunction that destroyed samples immediately following the spring tracer addition. For the first 24 h following each addition, stream samples were collected every 20 min and composited into 3-h intervals. For the next 30 d, samples were collected every hour and composited by day. Stream samples for 15N-NO3− analysis (n = 65) were selected to span the stream response, covering 24 time points from the three sites. All soil solutions and streamwater samples were filtered in the field through ashed 0.7-μm glass fiber filters. Soil cores and water samples were frozen on the day of collection to minimize microbial activity between time of collection and later processing.

Laboratory processing and analyses

Soil cores were thawed then sieved to 2 mm, and 10-g subsamples were dried at 110°C for 1 d for moisture determination. A second subsample was ground to a fine powder using a ball mill (Retsch mixer mill MM200; Verder Scientific, Newtown, Pennsylvania, USA) then dried and weighed for isotope analysis. Roots were collected during sieving, sorted to fine (<1 mm) and coarse (>1 mm) root categories, dried for one week at 50°C, and weighed. Roots were then frozen with liquid nitrogen and ground with a mortar and pestle to homogenize for a representative subsample, which was ground in a freezer mill to a fine powder for isotope analysis (Spex CertiPrep 6750; Spex CertiPrep, Metuchen, New Jersey, USA). Oi material was passed through a 6-mm sieve then dried at 60°C for 5–7 d and weighed. Litterfall was sorted to leaf, needle, twig, and other components, dried to a constant mass at 60°C and later processing.

For the spring addition only, the 20 sieved soil samples (<2 mm) from each of five dates (day −1, +1, 2, 7, 30) were split using density fractionation (Sollins et al. 1999), which separates soil material into a fraction dominated by particulate organic matter (light fraction) and a fraction dominated by mineral-associated material (heavy fraction). Cost prevented similar analyses for summer and fall. Twelve grams of dried soil were added to 36 mL of low-N sodium polytungstate (SPT) solution prepared to a density of 1.65 g/cm3. The soil-SPT slurry was agitated on a shaker table for 2 h, centrifuged for 12 min, and allowed to stand for 12–24 h, during which time particles fully separated into floating (light) and settled (heavy) fractions. Light-fraction material was aspirated from the top, then both fractions were separately filtered on ashed 7-cm Whatman GF/F filters (GE Healthcare Life Sciences, Pittsburgh, Pennsylvania, USA), rinsed with at least 250 mL of deionized water, dried at 55°C for 4 d, weighed, and ground to a fine powder for isotope analysis.

Concentrations of trace gases (N2O and CO2) were measured at Cornell University (Ithaca, New York, USA) using a gas chromatograph fitted with an electron capture detector and thermal conductivity detector (Shimadzu GC-2014; Shimadzu, Kyoto, Japan). Chamber volume was calculated using the average of four depth measurements made in the field. Gas fluxes were calculated from the rate of increase in concentration over time. In cases where the concentration increase was not linear over the entire 2-h incubation, fluxes were calculated using the slope of the initial linear period. We did not measure gas 15N composition because of the very low N2O concentrations observed and because the large size of the background N2 pool typically precludes use of the 15N tracer technique to detect 15N2 production (Yang et al. 2014). Thus, the potential seasonal role of denitrification as a driver of 15N losses was inferred primarily from patterns of “unrecovered” 15N, recognizing that this term includes not only 15N gas losses but also unmeasured hydrologic or plant uptake 15N fluxes and errors in all measured terms.

For all solutions, NO3−, NH4+, and Br− concentrations were measured using ion chromatography (Dionex ICS-2000; Dionex, Sunnyvale, California, USA). Dissolved organic carbon (DOC) and total dissolved N (TDN) were measured using oxidative combustion (Shimadzu TOC-VCPN with a TNM-1 chemiluminescent detector; Shimadzu, Kyoto, Japan) following acidification and sparging. Dissolved organic N (DON) was computed by difference (DON = TDN − NO3− − NH4+). The 15N composition of NO3− was measured using a modification of the ammonia diffusion method described by Sigman et al. (1997). Briefly, samples were concentrated by boiling, while NH4+ was removed from solution by conversion to NH3 with addition of MgO to increase sample pH. Next, NO3− was reduced to NH4+ using Devardas alloy, then more MgO was added to repeat the conversion to NH3; this NH3 was diffused onto glass fiber filters acidified with 2.5 M K2SO4 and suspended within Teflon packets (DuPont, Wilmington, Delaware, USA) for 48 h while heating to 60°C, followed by 7 d on an orbital shaker. Samples with potential for
15N enrichment exceeding instrument range (indicated by high concentrations of the Br$^{-}$ tracer) were spiked with unlabeled NO$_3^-$ (15N = 4.4 ± 0.02%), with sample 3N values computed after correcting for these spikes.

All stable isotope analyses were conducted at the Cornell University Stable Isotope facility (Cornell University, Ithaca, New York, USA) using an isotopic ratio mass spectrometer (Finnigan MAT Delta Plus, Thermo Finnigan, San Jose, California, USA) following combustion with an elemental analyzer (Carlo Erba NC2500, Thermo Finnigan, San Jose, California, USA).

Quantitative analyses

15N composition is expressed using customary delta (δ) notation, as the difference between the ratio of 15N to 14N in a sample (R_{sample}) and in the atmospheric N$_2$ gas standard (R_{std}), expressed relative to that standard in per mil units (%)

$$\delta^{15}N(\%o) = \left(\frac{R_{\text{sample}} - R_{\text{std}}}{R_{\text{std}}}\right) \times 1000.$$ (1)

Repeated-measures analysis of variance was used to determine statistically significant differences in δ^{15}N values among dates for each of the regularly sampled ecosystem N pools. Nitrogen stocks (M_{pool}: g N/ha) were computed using N concentration and mass measurements averaged over the study period (Table 1). Recovery of tracer 15N in each pool (15N$_{\text{Rec}}$) was computed as the difference in the atom% 15N of a pool after tracer addition (15N$_{\text{post}}$) compared to pre-addition (15N$_{\text{pre}}$) and multiplied by the pool’s N stock; relative (%) recovery was computed by dividing the mass of tracer added (M_{15Nadded}: g 15N/ha) and multiplying by 100.

$$^{15}N_{\text{Rec}}(\%) = \left(\frac{\text{atom}\%^{15}N_{\text{post}} - \text{atom}\%^{15}N_{\text{pre}}}{M_{\text{poolN}}}\right) \times M_{\text{15Nadded}} \times 100.$$ (2)

We estimated both overall tracer recovery and percentage recovery of each tracer application relative to measurements immediately preceding each addition.

Results

The Oi layer and surface soil together dominated the overall recovery and seasonal patterns of 15N retention, with strong and persistent retention in these pools during spring and autumn (>90%), but transient retention followed by large losses during summer (Figs. 3 and 4). Fine and coarse roots together retained only a small fraction (<4%) of each of the three 15N additions (Figs. 3 and 4), with lagged temporal responses relative to those observed in the detrital pools. Unrecovered 15N, possibly lost to N gases, peaked in summer, with small losses in spring. Losses of tracer 15N as NO$_3^-$ leaching from the surface soils also peaked following the summer addition, but this overall flux was very small: cumulative 15N-NO$_3^-$ leaching losses both in shallow soil water and in streamwater each amounted to <0.1% of the added tracer.

15N recovery in surface litter and soil

Following the spring addition, the small N pool in the Oi layer (73 kg N/ha; Table 1) showed immediate enrichment in δ^{15}N by ~90% for the following three months (Fig. 3A). The summer addition further enriched the Oi layer to nearly 210%, but only for one week: by day 30, Oi layer δ^{15}N values did not differ significantly from before the summer addition. The autumn addition increased Oi layer δ^{15}N values by a similar amount as the prior two additions. Using these δ^{15}N enrichments to compute tracer recovery (Eq. 2), the Oi layer retained 35% of the spring tracer addition from day 1 through at least day 90 afterwards (Fig. 4A, B). During the first week following the summer tracer application, the Oi layer retained additional 15N amounting to 44% of that application (Fig. 4A, B). However, the Oi layer then lost 15N, mostly between day 7 and 30 after the summer addition; by day 90, the Oi layer had lost as much 15N as it initially retained from this application (Fig. 4A, C). In autumn, the Oi layer retained additional 15N averaging 46% of that application (Fig. 4A, D).

In the large pool of N in the top 10 cm of soil (2052 kg N/ha), all three 15N additions immediately increased soil δ^{15}N by approximately 5% (Fig. 3B). This soil enrichment persisted throughout the monitoring periods following the spring and autumn additions, but decreased by about half by day 30 after the summer addition. These enrichments corresponded to recovery of over half (55%) of the 15N added in spring in this soil pool, with a small decrease in 15N recovery after the first week. The heavy fraction (mineral-associated material) accounted for 26% of the spring tracer 15N addition.

Table 1. Dry mass, C, and N content for leaf litterfall, the litter layer (Oi), soil, and roots, and late-fall (20 November) recovery of the cumulative 15N additions, sampled in Arnot Forest near Ithaca, New York, USA.

<table>
<thead>
<tr>
<th>Ecosystem pool</th>
<th>Dry mass (Mg/ha)</th>
<th>C/N ratio</th>
<th>C stock (Mg/ha)</th>
<th>N stock (kg/ha)</th>
<th>Recovery of cumulative 15N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf litterfall</td>
<td>1.8 ± 0.1</td>
<td>67.2 ± 1.6</td>
<td>0.8 ± 0.04</td>
<td>13 ± 0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Fine roots (<1 mm)</td>
<td>2.5 ± 0.4</td>
<td>38.7 ± 3.2</td>
<td>1.1 ± 0.2</td>
<td>29 ± 3</td>
<td>2.4</td>
</tr>
<tr>
<td>Coarse roots (>1 mm)</td>
<td>6.9 ± 1.8</td>
<td>87.2 ± 7.7</td>
<td>3.4 ± 0.9</td>
<td>39 ± 10</td>
<td>2.2</td>
</tr>
<tr>
<td>Oi (litter layer)</td>
<td>8.7 ± 0.8</td>
<td>39.4 ± 0.9</td>
<td>2.9 ± 0.4</td>
<td>73 ± 9</td>
<td>24.7</td>
</tr>
<tr>
<td>Soil (<2 mm fraction)</td>
<td>618 ± 50</td>
<td>15.0 ± 0.7</td>
<td>32.5 ± 3.9</td>
<td>2052 ± 123</td>
<td>48.1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77.7</td>
</tr>
</tbody>
</table>

Notes: Soil and roots were sampled from the top 10 cm. Values are mean ± SE.
(Fig. 5) or over half (57%) of the 15N recovered in the soil pool (Table 2). Recovery of 15N in the heavy fraction did not vary significantly by date, with similar recovery on days 1–30 (Fig. 5). After the summer tracer application, additional 15N was recovered in soil during the first week, amounting to 52% of this tracer addition. Soil then lost 15N between day 7 and 30 afterward, reducing recovery in this pool to 30% of the summer addition. In autumn, soil retained additional 15N amounting to 59% of this tracer application. Overall, the combined detrital pools (Oi and soil) formed the largest fate for added 15N after all three tracer additions.

Retention was brief in summer and greatest in autumn, consistent with patterns expected if the supply of particulate and dissolved organic C from leaf-fall spurred microbial demand for N, although substantial recovery also occurred in the mineral soil and its heavy fraction, which were not expected to support high rates of microbial immobilization.

15N recovery in plant pools

The small pool of N in fine roots (29 kg N/ha) demonstrated similar temporal trends in 15N enrichment as the Oi and soil pools, increasing by the same amount (~16%) after all three additions (Fig. 3C). Fine-root 15N enrichment persisted throughout the 90 days after the spring addition, but declined between day 30 and 90 after the summer addition. Coarse root N (39 kg N/ha) had a slower increase in 15N enrichment relative to the other pools: significant increases in δ^{15}N occurred by...
day 7 after the spring and day 20 after the summer 15N additions (Fig. 3C). Fine and coarse roots each accounted for a minor amount ($\leq 2\%$ each) of tracer 15N that did not vary by season.

Litterfall consisted primarily of deciduous leaves (84%), with small contributions from hemlock needles (5%), twigs (8%), and other litter (3%; mostly seeds). The small flux of N in leaf litterfall (12.8 kg N ha$^{-1}$ yr$^{-1}$) showed modest δ^{15}N enrichment (13.6%) and amounted to just 0.3% of the total 15N addition. The unvarying amount of 15N recovered in roots and the small amount of 15N found in roots or litterfall overall countered the expectation that plant uptake of 15N has a substantial role in its seasonal retention patterns.

Gas fluxes

Soil respiration showed typical seasonal patterns of slow rates in spring, a midsummer peak, and a decrease in autumn (Fig. 6A), with rates similar to those observed...
previously at nearby sites within Arnot Forest (Fisk et al. 2004). Seasonal patterns of soil respiration broadly corresponded with temperature, although rates in spring, when soils were very wet, were lower than might have been expected based on soil temperature alone (Fig. 6B).

Fluxes of N₂O regularly fell below detection limits. Detectable fluxes of 0.1–28 µg N·m⁻²·h⁻¹ did occur at 1–6 of the 18 collars on all but one sampling date, and all but one collar had measurable fluxes on at least one date. Averaged across all collars, mean N₂O fluxes during spring (0.1–0.7 µg N·m⁻²·h⁻¹) were lower than during summer (1.2–5.7 µg N·m⁻²·h⁻¹) or autumn (0.7–3.2 µg N·m⁻²·h⁻¹; Fig. 6A). If the overall mean flux rate of 1.2 µg N·m⁻²·h⁻¹ applied for 200 days of the April–November measurement period, N₂O loss amounted to roughly 0.06 kg N/ha, although the variability of N₂O fluxes made this estimate extremely crude.

We did not directly measure losses of tracer ¹⁵N gas (NO, N₂O, or N₂), but made some inferences about gaseous ¹⁵N losses based on the unrecovered or "missing" ¹⁵N tracer. High rates of total ¹⁵N tracer recovery during spring (83–94% ± 7–11%; mean ± SE) indicated that N gas losses could not have exceeded 6–17% of the tracer addition (Fig. 4B). Much larger losses occurred during summer of up to two-thirds (66% of this tracer addition). During days 1–7 after the summer addition, we recovered ¹⁵N amounting to all (101% ± 19%) of this addition, but recovery fell to 45 ± 18% by

TABLE 2. Characteristics and distribution of mass, C, N, and recovered ¹⁵N tracer (mean ± SE) between light and heavy soil fractions (0–10 cm, <2 mm material) for the spring tracer addition.

<table>
<thead>
<tr>
<th>Characteristics and distribution</th>
<th>Light fraction</th>
<th>Heavy fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C concentration (mg/g)</td>
<td>232 ± 8</td>
<td>36 ± 2</td>
</tr>
<tr>
<td>N concentration (mg/g)</td>
<td>8.5 ± 0.3</td>
<td>3.3 ± 0.2</td>
</tr>
<tr>
<td>C:N ratio (g/g)</td>
<td>27.5 ± 0.8</td>
<td>11.1 ± 0.3</td>
</tr>
<tr>
<td>δ¹⁵N pre (‰)</td>
<td>1.5 ± 0.3</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>δ¹⁵N post (‰)</td>
<td>7.4 ± 0.8</td>
<td>4.6 ± 0.6</td>
</tr>
<tr>
<td>Dry mass (% total)</td>
<td>12.7 ± 2.5</td>
<td>87.3 ± 2.5</td>
</tr>
<tr>
<td>C stock (% total)</td>
<td>51 ± 6</td>
<td>49 ± 2</td>
</tr>
<tr>
<td>N stock (% total)</td>
<td>29 ± 7</td>
<td>71 ± 3</td>
</tr>
<tr>
<td>¹⁵N tracer (% total)</td>
<td>43 ± 6</td>
<td>57 ± 12</td>
</tr>
</tbody>
</table>

Note: n = 20 samples per date, for each of five dates (29 April, 1 May, 2 May, 7 May, 30 May).

FIG. 6. CO₂ and N₂O fluxes (mean ± SE) (A) over the growing season and (B, C) in response to variations in soil temperature at 10 cm depth.
day 30 and 34 ± 9% by day 90 (Fig. 4C). In autumn, recovery of additional 15N amounting to 108 ± 15% of this application showed complete retention in the measured pools. Together, the N$_2$O measurements and patterns of unrecovered 15N indicate that larger gaseous losses of 15N likely occurred during summer than during the spring or fall.

Soil water

In the shallow lysimeters (10 cm depth), NO$_3^-$ concentrations were very low throughout early 2007. They rose in late May, peaked in June and July at >0.75 mg N/L, then dropped to ~0.20 mg N/L from mid-September onward (Fig. 7A). Dissolved organic N
(DON) concentrations remained stable throughout the year at ~0.10 to 0.20 mg/L (Fig. 7C). Tracer Br\(^{-}\) and \(^{15}\)NO\(_3\)\(^{-}\) were both detected in the shallow lysimeters after all three additions (Fig. 7E, G). Lysimeter \(\delta^{15}\)N-NO\(_3\) values reached 33–1712% (data not shown). Tracer \(^{15}\)N recovery amounted to <0.07 \(\mu g\) \(^{15}\)N-NO\(_3\)/L following the spring and autumn tracer additions and up to 0.44 \(\mu g\) \(^{15}\)N-NO\(_3\)/L in early August. Bromide and \(^{15}\)N-NO\(_3\) were applied at equimolar concentrations: <1% of the added \(^{15}\)N-NO\(_3\) was recovered relative to Br\(^{-}\) following the spring and autumn additions, with 3–6% recovered following the summer addition (Fig. 7G). This pattern supported the hypothesis that leachate \(^{15}\)N-NO\(_3\) loss should vary inversely with its retention in plant and detrital pools, driven at this site by variation in \(^{15}\)N retention in O\(_i\) material and soil. To roughly estimate the flux of tracer \(^{15}\)N-NO\(_3\) that reached 10 cm, measured concentrations of NO\(_3\)\(^{-}\) and tracer \(^{15}\)N-NO\(_3\) were multiplied by daily streamflow as an approximation of water flow (Fig. 2A), with concentrations on unmeasured dates interpolated using the mean of concentrations from adjacent measurement dates. For the cumulative period of 30 April to 31 December, these estimated fluxes amounted to ~0.3 kg NO\(_3\)-N/ha with 0.1 g/ha of tracer \(^{15}\)N or a mere 0.05% of the cumulative \(^{15}\)N addition.

In the deep (50-cm) lysimeters, NO\(_3\) concentrations displayed similar seasonal patterns as in the shallow lysimeters, with smaller seasonal amplitude (Fig. 7A). The deep lysimeters rarely had detectable Br\(^{-}\) concentrations (Fig. 7E) but showed enriched \(^{15}\)N-NO\(_3\)\(^{-}\) following the tracer addition. Nonetheless, tracer \(^{15}\)N-NO\(_3\) concentrations at 50 cm were very low, averaging <0.05 \(\mu g\) L of tracer \(^{15}\)N-NO\(_3\) and amounting to a negligible flux of tracer \(^{15}\)N.

Streamwater.—Consistent with past measurements (Goodale et al. 2009), stream NO\(_3\) concentrations were low during the winter and early spring, rose throughout May, peaked during summer, and decreased in autumn (Fig. 7B). Streamwater had similar NO\(_3\) seasonality as the lysimeters but roughly 1/10 their peak NO\(_3\) concentration (Fig. 7A, B). NO\(_3\) concentrations differed little among the three main stream sampling sites at 10, 86, and 165 m downstream from the creek’s spring source, except during late autumn, when the 10-m site had higher NO\(_3\) concentrations than the sites downstream. Dissolved organic carbon (DOC; data not shown) and DON (Fig. 7D) concentrations were generally low. The Br\(^{-}\) tracer peaked quickly and then dissipated at the three main stream sampling locations following all three additions (Fig. 7F). It fell below detection within a day at the 10-m site following all three additions and persisted just above detection limits for up to 30 d following the summer addition at the two downstream sites. The \(^{15}\)N tracer showed similar patterns, although detectable enrichment of \(^{15}\)NO\(_3\) persisted from the first \(^{15}\)N addition throughout the course of the study. Tracer \(^{15}\)NO\(_3\) recovery relative to Br\(^{-}\) dropped rapidly over time after all three tracer additions (Fig. 7H). On the evenings of the dates of the summer and autumn additions, stream export of tracer \(^{15}\)NO\(_3\) where the stream exited the study plot (86 m) peaked at 6% and 9%, respectively, of the paired Br\(^{-}\) tracer; corresponding samples from the spring addition were destroyed during analysis. Tracer \(^{15}\)NO\(_3\) recovery fell to <1% of Br\(^{-}\) in the one to two days following all three \(^{15}\)N additions. The cumulative amount of tracers lost from the plot in streamflow amounted to roughly 17% of the Br\(^{-}\) and 0.09% of the \(^{15}\)N-NO\(_3\) applications.

Cumulative \(^{15}\)N tracer fate

In late November, three-quarters (77%) of the cumulative \(^{15}\)N applied (210 g/ha) was recovered in the O\(_i\) layer (25%), surface soil (48%), and in fine (2%) and coarse (2%) roots (Table 1). The remaining 23% either moved to other plant pools or deep soil, or was lost from the ecosystem. Less than 1% moved into leaf litterfall or was lost as lysimeter or streamwater NO\(_3\)\(^{-}\). A quarter of the loss or movement of \(^{15}\)N to unmeasured pools occurred about 1 week after the spring addition, while the rest occurred between 1 week and 1 month following the summer application.

Discussion

The retention and loss of tracer \(^{15}\)N varied considerably across our three seasonal applications, dominated by strong retention in litter and soil in spring and autumn and large \(^{15}\)N losses in summer, which coincided with the timing of \(^{15}\)N-NO\(_3\) leaching losses and stream NO\(_3\) peaks. Here, we discuss the likely processes governing these individual and interconnected \(^{15}\)N fates, illustrating how soil processes are central to seasonal patterns in \(^{15}\)N retention at this and possibly other sites.

Plant uptake

We hypothesized that root \(^{15}\)N uptake would peak in late spring and summer, corresponding with the phenology of plant growth and leaf production in this deciduous forest. However, our measurements showed little \(^{15}\)N recovery in roots overall (3–4%), with no seasonal variation. These \(^{15}\)N measurements did not cover all plant pools, but the root measurements likely captured the most important plant components. The very low recovery of \(^{15}\)N in litterfall (<0.05%; Table 1) suggests that little tracer moved to other plant parts during 2007, and subsequent measurements in 2008 found minimal additional \(^{15}\)N in all aboveground plant pools (2.6%) or in deeper roots (2.5%; Goodale et al., unpublished data). These results and those from similar studies (Nadelhoffer et al. 1999a, Templer et al. 2012) show that trees acquire only a small portion of \(^{15}\)N added as a tracer of simulated atmospheric deposition and that roots form the largest pool of plant \(^{15}\)N recovery during the first 1–3 years after tracer addition.

Plant \(^{15}\)N uptake is difficult to measure directly, and its seasonality is rarely quantified. Mass balance constraints
indicate that trees must take up a large flux of N each year to produce new leaves, wood, and other tissues, and that they acquire the great majority of this N from mineralization and mycorrhizal-mediated uptake of N from the soil rather than from deposition (e.g., Johnson 1992, Likens and Bormann 1995, Cleveland et al. 2013). At Hubbard Brook, New Hampshire, USA, a site with low stream NO$_3^-$ in summer (Likens and Bormann 1995), direct measurements of N uptake by sugar maple and red spruce (Picea rubens) roots show slightly lower uptake rates in May than in July and September (Secci and Templer 2011), with relatively stable temporal patterns of uptake across these months. The 15N approach used here traces plant uptake of N from deposition, but does not capture uptake from soil, thus missing the magnitude and any seasonality of this large flux of N. However, the tracers did show that plant uptake of added 15N did not vary seasonally, and that the large decline in 15N recovery in summer was not driven by plant uptake but instead was dominated by variation in soil retention processes.

Soil retention

Our tracer results showed strong retention of added 15N in detrital pools following the spring and autumn additions, but only transient retention following the summer addition. We can only speculate as to why detrital 15N retention varied so greatly across the three seasons and what processes drove these responses. Our measurements of 15N recovery in bulk soil pools represent the combined responses of 15N in several different soil components, including soluble extractable N, microbial biomass, soil organic matter (SOM), and clay particles. Past studies in temperate forests show that additions of 15NH$_4^+$ or 15NO$_3^-$ are usually consumed within a day and that microbial biomass often dominates the initial sink for added 15N on scales of hours to about a week after which recovery decreases sharply; retention by SOM can occur rapidly and persistently, dominating the remaining 15N recovery for months to years (Seely and Lajtha 1997, Zogg et al. 2000, Perakis and Hedin 2001). Further, the heavy soil fraction typically consists of very old SOM considered relatively protected from microbial consumption (Sollins et al. 1999, Gaudinski et al. 2000). A tracer study in Switzerland also found that the majority of soil 15N retention occurred in their most stable soil pool, the clay fraction (Hagedorn et al. 2005). Thus, the cool and wet conditions in spring could have favored abiotic NO$_3^-$ reduction and reaction with SOM, driving rapid 15N retention in detrital pools, especially in stable heavy-fraction material.

During summer, transient microbial 15N retention may have had a greater role in 15N retention than in spring. Soil respiration peaked in summer, when temperatures were highest (Fig. 6A), indicating faster rates of root and heterotrophic microbial respiration and a correspondingly greater capacity for microbial 15N immobilization. We did not partition 15N into microbial biomass, but past 15N studies have shown rapid but short-term immobilization of added 15N in microbial biomass, with sharp declines after 1–2 weeks (Seely and Lajtha 1997, Zogg et al. 2000, Perakis and Hedin 2001, Providoli et al. 2006). In our study, the abrupt decrease in 15N recovery in Oi material and soil between days 7 and 30 after the summer addition (Fig. 4) had a similar temporal pattern as that observed for turnover of soil microbial biomass in other studies. The capacity for microbial N immobilization may have been particularly C-limited at our site compared to many others. Invasion by nonnative earthworms has left only small pool of litter and soil C in the top 10 cm (Table 1; Bohlen et al. 2004, Fahey et al. 2011), and the soil C/ N ratio is low (15), below the typical threshold for microbial N immobilization (20–25).

The autumn tracer addition occurred when conditions were reasonably well-suited to microbial N immobilization: soils were moist but not saturated, and leaf-fall supplied fresh inputs of labile C. Retention of 15N in detrital pools persisted throughout the three weeks of autumn sampling, longer than for the summer tracer addition. Lower rates of respiration in cooler conditions
and increased availability of C provided by leaffall could have perhaps sustained longer microbial immobilization in autumn than during summer.

Nitrogen gas losses

Gaseous losses of N can occur as NO, N₂O, and N₂ produced by both nitrification and denitrification. We expected little effect of nitrification on the fate of our \(^{15}\)NO₃⁻ tracer and focused on denitrification, in which microbes use NO₃⁻ as a terminal electron acceptor when O₂ is limiting. Measured N₂O fluxes were very low, but denitrification losses of N₂ can be large even when N₂O losses are not. At Hubbard Brook, New Hampshire, USA, measured N₂: N₂O loss ratios from surface soils average 73–210 (Kulkarni et al. 2014) or 5–15 (Morse et al. 2015). Applying these ratios to our roughly estimated N₂O flux of 0.06 kg N ha\(^{-1}\) yr\(^{-1}\) yields a range of possible N₂ flux of 0.3–0.9 up to 4–12 kg N ha\(^{-1}\) yr\(^{-1}\).

Increased \(^{15}\)N loss to denitrification during the lower moisture conditions of summer may seem counterintuitive, but denitrification increases steeply with temperature and can occur rapidly under moist conditions with moderate O₂ levels (Morse et al. 2015). The presence of soil redoximorphic features at this site indicated the presence of anaerobic microsites, and large rainfall events between day 7 and 30 after the summer \(^{15}\)N addition could have further stimulated denitrification.

Our measurements of N₂O loss varied greatly but peaked in summer (Fig. 6A). Prior natural abundance measurements at Pine Creek and other nearby streams showed enrichment of \(^{15}\)N in shallow groundwater provide strong evidence for midsummer denitrification (Wexler et al. 2014).

Hydrologic N losses

Leaching of tracer \(^{15}\)N-NO₃⁻ peaked in summer, when shallow lysimeters captured a small flush of \(^{15}\)NO₃⁻ in the first large rainstorm. Yet, losses of tracer \(^{15}\)N-NO₃⁻ to lysimeter water were very small, amounting to <1% of the paired Br⁻ tracer in spring and autumn and only 3–6% in summer, with a cumulative leaching flux <0.05% of added \(^{15}\)N-NO₃⁻. At Plylimon, Wales, leaching to 10–100 cm depth amounted to 19% of tracer \(^{15}\)N-NO₃⁻ relative to Br⁻ within four hours of application along with a 1-cm flush of water (Evans et al. 2008). In both studies, comparison to a conservative Br⁻ tracer confirms that most of the added \(^{15}\)N-NO₃⁻ was rapidly retained, transformed, or lost above or before collection of soil water and was not simply missed due to imprecision in lysimeter sampling or delayed solute transport.

Tracer \(^{15}\)N-NO₃⁻ also disappeared quickly from the stream, such that at most 9% of the \(^{15}\)N-NO₃⁻ tracer was recovered relative to Br⁻ as the stream exited the plot during the hours immediately following the tracer additions to the plot and to the stream surface. Overall, the stream exported <0.1% of applied \(^{15}\)N-NO₃⁻.
although additional losses might have occurred during unmeasured periods. At other sites, streamwater 15N-NO_3^- losses accounted for 5–10% of added 15NH$_4$15NO$_3$, occurring primarily during the period of tracer application and up to three to six months thereafter (Nadelhofer et al. 1999a, Schleppi et al. 1999, Kjønaas and Wright 2007), although these other studies all also included 25–35 kg N ha$^{-1}$ yr$^{-1}$ of experimental fertilizer additions, treatments which reduce ecosystem 15N retention and increase hydrologic losses (e.g., Tietema et al. 1998, Nadelhofer et al. 1999b, Templer et al. 2012).

Rapid transformation of tracer 15N-NO_3^- to DON is a possible alternative form of tracer leaching 15N loss (e.g., Seely and Lajtha 1997, Dail et al. 2001, Perakis and Hedin 2001; Kizewski et al., in press). However, DON concentrations in our shallow lysimeters usually fell below those for NO_3^-, and DON was unlikely to have been as enriched as NO$_3^-$ in 15N. Both factors would produce a smaller flux of tracer loss as 15N-DON than as 15N-NO$_3^-$ losses we observed. At Gårdsjön, Sweden, catchment additions of 15NH$_4$15NO$_3$ yielded much smaller (28%) stream losses of 15N as DON than as 15N-NO$_3^-$ (Kjønaas and Wright 2007). Our sampling did not encompass all forms of hydrologic 15N loss, but overall, hydrologic losses of tracer 15N-NO_3^- were very small relative to changes in 15N retention in soil and surface litter.

Seasonality of ecosystem N retention

To date, seasonal variation in ecosystem N retention processes have largely been inferred from patterns of stream NO$_3^-$ (e.g., Stoddard 1994, Brookshire et al. 2011, Ohte 2012). The typical pattern of low NO$_3^-$ concentrations during the growing season and higher losses during the dormant season is often interpreted as a reflection of plant N demand or degree of N saturation of the plant–soil system (Stoddard 1994, Goodale et al. 2000, Lovett et al. 2000, Wright et al. 2001). Yet, some catchments demonstrate nearly the opposite pattern marked by a rise of NO$_3^-$ in summer, spurring reexamination of the drivers of seasonal N retention processes (Mulholland 2004, Goodale et al. 2009, Brookshire et al. 2011, Ohte 2012). Catchments with relatively high stream NO$_3^-$ in summer could simply reflect delayed export of NO$_3^-$ by deep flow paths that decouple terrestrial processes from streams (Burns et al. 1998, Ohte 2012). At our site, however, streamwater and soil water both show similar seasonal patterns of summer NO$_3^-$ peaks, with tenfold higher concentrations in soil leachate than in streamwater (Fig. 7). We previously proposed that these observations could reflect increases in net nitrification in soil along with partial consumption of NO$_3^-$ by denitrification (Goodale et al. 2009).

In this tracer study, measurements of the fate of added 15N support the primary role of soil processes governing 15N retention and loss. Like most other 15N tracer studies in forests (e.g., Seely and Lajtha 1997, Tietema et al. 1998, Nadelhofer et al. 1999b, Templer et al. 2012), the great majority of 15N recovery occurred in the O$_h$ layer and surface soils. Unlike these other studies, our tracer additions showed strong seasonal variation in these detritus-associated 15N sinks, ranging from near-complete and persistent 15N retention following the spring and fall additions, including a large, rapid 15N sink into mineral-associated (heavy) soil material, to transient retention and subsequent loss following the summer addition. Plants took up little if any of the 15N lost from soil during summer, which instead may have been lost partly as N gases. The large loss of 15N from soil allowed both denitrification and 15N-NO$_3^-$ leaching to peak in summer. The concurrent decrease in detrital 15N retention, increase in 15N-NO$_3^-$ losses to soil water, and peaks in soil- and streamwater NO$_3^-$ concentrations all appear to together provide strong evidence for the primary role of soil processes in regulating seasonal patterns of 15N retention and loss at this site and perhaps for other catchments with similar seasonal stream NO$_3^-$ patterns.

In other temperate deciduous forests, net mineralization and nitrification rates typically peak in summer relative to spring and fall (e.g., Nadelhofer et al. 1983, Bohlen et al. 2001), associated with summer increases in microbial biomass (Bohlen et al. 2001) and the strong effect of temperature on nitrification (Stark 1996, Brookshire et al. 2011). Large increases in soil N-cycling rates in summer should increase the N supply to multiple fates that could include plant uptake, denitrification, and leaching. Seasonal leaching losses of NO$_3^-$ should dip in summer if N consumption processes increase more quickly than the supply rate or rise if nitrification rates exceed increases in loss processes. We observe that streams with the typical summer NO$_3^-$ dips often occur in regions where soils form thick surface organic layers, such as in the northern Appalachian Mountains (Goodale et al. 2000, Lovett et al. 2000), Scandinavia, and peaty regions of the UK (Wright et al. 2001). By contrast, many of the catchments with summer NO$_3^-$ peaks occur in warmer regions in the southeastern U.S. and Japan and contain soils that often lack this thick organic layer or have lower carbon contents (Band et al. 2001, Mulholland 2004, Brookshire et al. 2011, Ohte 2012). The location of our site in central New York occurs geographically closer to the northern sites, yet stream NO$_3^-$ seasonality follows the southern pattern, perhaps due partly to the site’s thin forest floor forming a limit on its capacity to retain N as cycling rates increase in summer. Forest soils with thick organic horizons and high C:N ratios have a greater capacity to retain new 15N (Lewis and Kaye 2012) and to retain N overall (e.g., Gundersen et al. 1998) relative to lower-carbon sites; soil carbon status may also form an important factor governing seasonality of N retention. Combining new seasonal 15N studies with mass balance analyses at a range of sites is needed to test the role of
soil processes in producing varying seasonal N retention and loss patterns.

Acknowledgments

This work was supported by NSF CAREER (DEB-0845451) and the Cornell Agroecology Program (USDA). Field and lab assistance was provided by Jeff Beem-Miller, Leann Canady, Bianca Dygert, Kim Falbo, Abby Jane Golash, Kelly Hanley, Rachel Hatc, Abu Jollah, Alicia Korol, Rebeca Sanders-Demott, Jen Schoen, Amy Werner, and Helenium de Wit, with additional assistance for tracer application and gas measurements from Kim Sparks, John Pollak, Danica Lombardozzi, April Melvin, Quinn Thomas, Christina Tonitto, and Dena Vallano. Bhavaya Sridhar, Bridget Darby, and Charlotte Levy. Two anonymous reviewers provided constructive comments on the manuscript. We express special gratitude for contributions of advice and field assistance from Oliver Schaufelberger and Pat Mulholland.

Literature Cited

