2018

Comparison of Two Alternate Prostaglandin Products in Yearling Beef Heifers

Alicia C. Lansford
University of Nebraska - Lincoln

Tonya L. Meyer
University of Nebraska-Lincoln, tl.meyer@live.com

Richard N. Funston Funston
University of Nebraska - Lincoln, rfunston2@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/animalscinbcr

Part of the [Large or Food Animal and Equine Medicine Commons](https://digitalcommons.unl.edu/collections/largeanimal), [Meat Science Commons](https://digitalcommons.unl.edu/collections/meatscience), and the [Veterinary Preventive Medicine, Epidemiology, and Public Health Commons](https://digitalcommons.unl.edu/collections/veterinary)

https://digitalcommons.unl.edu/animalscinbcr/973

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Beef Cattle Reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Comparison of Two Alternate Prostaglandin Products in Yearling Beef Heifers

Alicia C. Lansford
T.L. Meyer
Rick N. Funston

Summary with Implications

Yearling heifers were administered 1 of 2 alternate prostaglandin products (Lutalyse vs. Lutalyse HighCon), which differ in concentration of active ingredient and administration route. Timing of estrus, pregnancy rate to AI, and final pregnancy rate did not differ between treatments. Body weight and ADG were also not affected by prostaglandin treatment. These results indicate producers can utilize Lutalyse HighCon, administered subcutaneously (s.c.), to avoid injection site blemishes and reduce carcass discounts with no impact on estrus synchronization or pregnancy rates.

Introduction

Estrus synchronization optimizes labor and time, increases calf uniformity, decreases the length of the calving season, and improves the ease of using AI. Prostaglandin F2α (PG), a hormone used in estrus synchronization, is typically injected intramuscularly (i.m.) to regress the corpus luteum, initiate estrus, and ultimately, cause ovulation of the dominant follicle. The Beef Quality Assurance program encourages administration of injectable products, decreasing the use of i.m. injections, which can cause injection site lesions. Lutalyse HighCon (12.5 mg/mL dinoprost tromethamine, Zoetis Animal Health, Parsippany, NJ) has recently received labeling for either s.c. or i.m. injection. It contains a higher concentration of dinoprost tromethamine than Lutalyse (5 mg/mL, Zoetis Animal Health, Parsippany, NJ) and subsequent dosage is decreased from 5 to 2 ml. The objective of the present study was to evaluate the efficacy of 2 ml s.c. Lutalyse HighCon compared with 5 ml i.m. Lutalyse in estrus response and pregnancy rates in a melengestrol acetate (MGA)-PG protocol.

Procedure

Yearling, Angus-based heifers managed at 2 locations were utilized to evaluate the efficacy of 2 alternate PG (Lutalyse vs. Lutalyse HighCon) products. Heifers at location 1 (n = 100, 750 ± 7 lb, L1) were maintained at West Central Research and Extension Center (WCREC), North Platte, NE. Heifers were offered a ration consisting of 13 lb/hd grass hay, 5 lb/hd wet corn gluten feed, and 1 lb/hd of 1 of 2 mineral supplements, on an DM basis.

Heifers were synchronized using a MGA-PG protocol (Figure 1). Each heifer was offered 0.5 mg/d of melengestrol acetate (MGA, Zoetis Animal Health, Parsippany, NJ) pellets in their diet (d 1 to 14). On d 33, heifers were blocked by previous mineral treatment and assigned to receive 5 ml Lutalyse i.m. (CONTROL, n = 50) or 2 ml Lutalyse HighCon s.c. (HiCON, n = 50).

A heat detection patch (Estrotect, Rockway Inc., Spring Valley, WI) was applied at PG injection. Heifers were managed together to observe estrus continuously for 6 d.

Heifers were AI 12 h after estrus was observed. Heifers were considered in estrus when more than 50% of the rub-off coating was removed on the Estrotect patch. Heifers not detected in estrus (n = 16) were given a s.c. injection of Lutalyse HighCon 6 d after initial PG injection and placed with 2 bulls. Inseminated heifers were placed in a separate pasture for 10 d before being placed with bulls and heifers not detected in estrus for a 60 d breeding season at a bull to heifer ratio of 1:50. Pregnancy to AI was diagnosed via transrectal ultrasonography (Aloka, Hitachi Aloka Medical America Inc., Wallingford, CT) 51 d after initial PG injection and BW was recorded. Final pregnancy diagnosis occurred 78 d after initial pregnancy diagnosis via transrectal ultrasonography to determine final pregnancy rates and record BW.

A second group of yearling, Angus-based crossbred heifers were managed at the Kelly Ranch, Sutherland, NE (n = 90, 719 ± 9 lb; location 2, L2) and were offered a ration containing 1 lb/d wet distillers grains, 5 lb/d grass hay, 7 lb/d corn silage, and 0.4 lb/d balance pellet on a DM basis. Heifers were synchronized with a similar MGA-PG protocol as L1 and assigned randomly to CONTROL (n = 45) or HiCON (n = 45) treatment groups.

Heifers were AI 12 h after detection of estrus. Heifers not expressing estrus by 96 h were AI and given 2 ml Factrel i.m. (50 μg/mL gonadorelin hydrochloride, Zoetis Animal Health, Parsippany, NJ). Ten d post AI, 2 bulls were placed with heifers for a 40 d breeding season. Pregnancy to AI was diagnosed via transrectal ultrasonography 57 d after PG injection and BW recorded. A final pregnancy diagnosis and BW measurement followed 50 d after initial pregnancy diagnosis on heifers not pregnant to AI.

Figure 1. Melengestrol acetate—prostaglandin F2α (MGA-PG) protocol. Melengestrol acetate (Zoetis Animal Health, Parsippany, NJ) offered to each heifer for 14 d at a rate of 0.5 mg/d. On d 33, heifers were administered either 5 ml i.m. Lutalyse (CONTROL, 5 mg/mL dinoprost tromethamine, Zoetis Animal Health, n = 95) or 2 ml s.c. Lutalyse HighCon (HiCON, 12.5 mg/mL dinoprost tromethamine, Zoetis Animal Health, n = 95).
The following year, in 2017, additional yearling Angus-based heifers located at WCREC (2017, n = 98) were exposed to an MGA-PG protocol. Heifers were managed the same as L1, except all heifers received 2 mL s.c. Lutalyse HighCon. Heifers were observed for estrus activity for 4 d after PGF2α injection and AI 12 h after detection. Those not detected (n = 13) were given a second injection of Lutalyse HighCon and placed with bulls for a 60 d breeding season.

Statistical Analysis

The PROC GLIMMIX procedure of SAS (SAS Institute, Inc., Cary, N.C) was used for statistical analyses with location and treatment in the class statement. Main effects analyzed were estrus detection time points, AI pregnancy rate, final pregnancy rate, BW and ADG. Individual heifer was considered the experimental unit. Means were declared significant for both experiments at $P \leq 0.05$ with $0.05 < P < 0.10$ considered a tendency.

Results

Initial BW was similar ($P = 0.36$) between treatments (729 vs. 739 ± 8 lb, CONTROL vs. HiCON), but differed ($P = 0.01$) between locations (750 vs. 719 ± 7 lb, L1 vs. L2). Additionally, BW at first pregnancy diagnosis was similar ($P = 0.26$) between treatments (858 vs. 871 ± 9 lb, CONTROL vs. HiCON), but also differed ($P = 0.04$) by location (851 vs. 875 ± 9 lb, L1 vs. L2). Heifers at L2 had a greater ADG ($P < 0.01$) between prebreeding and AI pregnancy diagnosis compared with heifers at L1 (2.0 vs. 2.9 ± 0.07 lb/d). At final pregnancy diagnosis, heifer BW was similar ($P = 0.71$) between locations (928 vs. 941 ± 31 lb, L1 vs. L2), and treatments ($P = 0.85$; 939 vs. 933 ± 24 lb, CONTROL vs. HiCON). The discrepancy in BW and ADG by location is caused by L2 heifers starting at a lower BW at initiation of the trial, but due to a higher energy ration fed through the treatment period, compensating to a similar final BW.

Percentage of heifers detected in estrus is summarized in Table 1, and was similar between treatments at ≤ 60 h ($P = 0.15$), ≤ 72 h ($P = 0.51$), and at 72 h ($P = 0.27$). There was a tendency ($P > 0.07$) for a location effect on estrus response timing at ≤ 60 h ($P = 0.15$), ≤ 72 h ($P = 0.51$), and at 72 h ($P = 0.27$). There was a tendency ($P > 0.07$) for a location effect on estrus response timing at ≤ 60 h ($P = 0.15$), ≤ 72 h ($P = 0.51$), and at 72 h ($P = 0.27$). Different management practices were implemented at each location, and likely caused the tendency for location to have an effect on estrus response times.

The discrepancy in BW and ADG by location is caused by L2 heifers starting at a lower BW at initiation of the trial, but due to a higher energy ration fed through the treatment period, compensating to a similar final BW.

Percentage of heifers detected in estrus is summarized in Table 1, and was similar between treatments at ≤ 60 h ($P = 0.15$), ≤ 72 h ($P = 0.51$), and at 72 h ($P = 0.27$). There was a tendency ($P > 0.07$) for a location effect on estrus response timing at ≤ 60 h ($P = 0.15$), ≤ 72 h ($P = 0.51$), and at 72 h ($P = 0.27$). There was a tendency ($P > 0.07$) for a location effect on estrus response timing at ≤ 60 h ($P = 0.15$), ≤ 72 h ($P = 0.51$), and at 72 h ($P = 0.27$). Different management practices were implemented at each location, and likely caused the tendency for location to have an effect on estrus response times.

In Table 1, estrus response times for CONTROL, HiCON, and 2017 groups is displayed in Figure 2.

Table 1. Estrus response times for yearling heifers given 2 alternate prostaglandin F2α injections in a MGA-PG estrus synchronization protocol

<table>
<thead>
<tr>
<th>Estrus response, %</th>
<th>Treatment1</th>
<th>SEM</th>
<th>P-value2</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 60 h</td>
<td>CONTROL</td>
<td>5.2</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>HiCON</td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>72 h</td>
<td>48</td>
<td></td>
<td>0.81</td>
</tr>
<tr>
<td>≤ 72 h</td>
<td>72</td>
<td>4.3</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>HiCON</td>
<td></td>
<td>0.69</td>
</tr>
<tr>
<td>Total Response</td>
<td>82</td>
<td>4.7</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>HiCON</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.9</td>
<td>0.40</td>
</tr>
</tbody>
</table>

1 Heifers administered 1 of 2 alternate PGF2α injections in the neck region on d 33 as part of a MGA-PG protocol. CONTROL: 5 mL i.m. Lutalyse (5 mg/mL dinoprost tromethamine, Zoetis Animal Health, Parsippany, NJ, n = 95) or HiCON: 2 mL s.c. Lutalyse HighCon (12.5 mg/mL dinoprost tromethamine, Zoetis Animal Health, n = 95). 2 TRT: PGF2α injection treatment main effect, Location: Location main effect, T×L: PGF2α injection treatment by location interaction.

Table 2. Pregnancy rates of yearling beef heifers given one of two alternate prostaglandin F2α injections

<table>
<thead>
<tr>
<th>AI pregnancy3, %</th>
<th>Treatment1</th>
<th>SEM</th>
<th>P-value2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>63</td>
<td>5.3</td>
<td>0.62</td>
</tr>
<tr>
<td>HiCON</td>
<td>60</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Total pregnancy4, %</td>
<td>98</td>
<td>2.7</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td></td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.7</td>
<td>0.85</td>
</tr>
</tbody>
</table>

1 Heifers administered 1 of 2 alternate PGF2α injections in the neck region on d 33 as part of a MGA-PG protocol. CONTROL: 5 mL i.m. Lutalyse (5 mg/mL dinoprost tromethamine, Zoetis Animal Health, Parsippany, NJ, n = 95) or HiCON: 2 mL s.c. Lutalyse HighCon (12.5 mg/mL dinoprost tromethamine, Zoetis Animal Health, n = 95). 2 TRT: PGF2α injection treatment main effect, Location: Location main effect, T×L: PGF2α injection treatment by location interaction. 3 Pregnancy diagnosed via transrectal ultrasonography a minimum of 31 d after PGF2α injection. 4 Final pregnancy diagnosis conducted via transrectal ultrasonography a minimum of 107 d after PGF2α injection.
to avoid injection site blemishes and reduce carcass discounts without negatively impacting estrus synchronization or pregnancy rates.

Implications/Conclusions

Treatment (Lutalyse vs. Lutalyse High-Con) did not affect estrus timing, pregnancy to AI, final pregnancy rates, BW or ADG. These results indicate producers can utilize a s.c. injection of Lutalyse HighCon

Alicia C. Lansford, graduate student
T.L. Meyer, research technician
Rick N. Funston, professor, University of Nebraska-Lincoln, West Central Research and Extension Center, North Platte, Neb.