1963

EC63-138 Growing Safflower in Nebraska

Follow this and additional works at: http://digitalcommons.unl.edu/extensionhist

"EC63-138 Growing Safflower in Nebraska" (1963). Historical Materials from University of Nebraska-Lincoln Extension. 3586.
http://digitalcommons.unl.edu/extensionhist/3586

This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Historical Materials from University of Nebraska-Lincoln Extension by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
What is Safflower?

Safflower is an annual plant grown primarily for oil content in the seeds. Most varieties have yellow or orange flowers, spines on the flower heads and leaves like a thistle plant.

Where is Safflower Grown?

The Nebraska Panhandle is the most important safflower producing area in the state. Banner, Kimball, Cheyenne and Deuel counties lead the area in safflower acreage. Smaller acreages are grown in several counties in southwest Nebraska. More humid weather in other parts of Nebraska favors safflower diseases which limit both yield and quality of seed produced. For proper seed set and high oil content dry atmospheric conditions are needed from flowering until the crop is mature.

In Nebraska the crop is commonly grown in rotations with wheat on non-irrigated land. Where water is available a pre-plant irrigation to fill the soil profile with moisture will help stabilize production without adding disease hazards likely to result from full season irrigation.

What Varieties Are Grown?

N-10, U.S. 10 and Gila (pronounced heela) are recommended varieties. All produce similar yields and oil content under Nebraska conditions. N-10, developed at the Nebraska Agricultural Experiment Station, was until recently the most widely grown variety in the area. It is susceptible to rust and root rot but these diseases have not been economically important in non-irrigated areas of the west. Gila, an Arizona release, and U.S. 10 have a degree of root rot resistance.

What Yields Are Expected?

Yields of safflower depend on the use of good production practices, varieties, and seasonal variations in growing conditions. In years of little disease and adequate moisture, yields will be similar whether the crop is grown on stubble or summerfallowed land. On stubble land one may expect yields from 500-1,000 pounds per acre and on summerfallow land from 500-1,500 pounds per acre.

How Does the Income From Safflower Compare With That From Other Replacement Crops for Wheat?

The average acre income from safflower is comparable with that from other replacement crops that can be grown in the area. During a 6-year period at the Box Butte Experiment Station a rotation of wheat-safflower-fallow produced an average yearly income per acre equal to that from a wheat-fallow rotation. Comparative returns from safflower, spring small grains, sorghum, corn or other crops vary
from farm to farm and are influenced by seasonal variations in weather, price relationships and other factors.

What is the Length of Growing Season?

Length of growing season depends on date of seeding. April plantings will mature in late August or early September (about 140 days). May plantings will mature in mid- to late September (about 120-130 days). June plantings will mature in late September or early October if freezing weather does not occur. Among current varieties there is little difference in length of growing season required.

What is Safflower Used for Commercially?

The principal product from processing safflower seed is the oil which is used primarily in the food and paint and varnish industries. The meal remaining after oil extraction is used as a protein supplement in livestock feed. In experimental feeding trials, safflower meal was equal in feed value to other oilseed meals when comparisons were made on the basis of equal amounts of protein.

Is Safflower "Hard" on the Ground?

Safflower appears to have fertility requirements similar to those of wheat or barley and apparently is no "harder on the soil" in terms of nutrient usage than these two crops.

Safflower has a tap root system which will penetrate to 7 or 8 feet in permeable soil. It will usually leave the soil dry to this depth. This may cause moisture stress in crops following safflower, especially during dry years.

How is Safflower Marketed?

Open market outlets for safflower have not yet developed. Hence, the crop is commonly grown under a marketing contract with an oilseed processing company. At least one company contracts for safflower production in western Nebraska each year and thereby provides a dependable outlet for the crop. Most production contracts specify a minimum price. Presently, this minimum is $75 per ton.

What Are Some Important Considerations in Growing Safflower?

Soil Type: Safflower is not a weed and will not do well on marginal cropland. It grows best on deep, well-drained sandy loam to silt loam soils. Land suitable for wheat and barley will usually produce the best safflower yields.

Seedbed Preparation and Residue Management:

Moderate to light wheat stubble: If stubble cover is "light" to "moderate", a sweep machine or rod weeder with semi-chisels can be used for the first one or two operations. The operations should be at a depth of 3 to 4 inches in early April. One or two additional operations with a plain rod weeder before planting will firm the seedbed and destroy newly sprouted weeds.

Heavy wheat stubble: Where stubble cover is heavy (2,000 to 3,000 pounds per acre) a oneway, tandem disk or chisel machine should be used for the first operations. The first tillage should be performed about April 1 at a depth of approximately 4 inches. A second chiselling, disking, or subtilling operation can be performed in mid-April. The field may then be rod weeded once or twice before the crop is planted.
Excessively heavy wheat stubble: If stubble cover is excessively heavy—more than 3,000 pounds per acre—it may be desirable to chop the residue or remove part of it for straw. Stubble choppers and beaters are available to break up the heavy stubble so the ground can be worked without undue difficulty. Stubble can be cut with a mower or combine and broken up with a disk. Stubble should be chopped sometime in March, if possible, so tillage can start early in April. Tillage operations similar to those outlined for heavy stubble cover can be followed after the stubble has been chopped.

Grain sorghum, corn or millet stubble: Land that was in grain sorghum, corn or millet usually requires one less tillage operation to provide a suitable seedbed for safflower than does small grain stubble. One shallow operation on such land with a subtiller, oneway, or chisel in mid-April followed by tillage with a plain rod weeder just before planting should suffice.

Moldboard plowing: It is desirable to leave as much old crop residue as possible at the surface of the soil on fields that are to be planted to safflower. The old crop residue will supplement the safflower stubble in helping control wind erosion. Good weed control can be accomplished by moldboard plowing although it buries the old crop residue and is a more costly operation than subtilling, oneway- or chiselling.

If the moldboard plow is used, plowing should be done in mid-April. Firming the soil with a treader, rotary hoe in reverse, or harrowing should follow immediately to conserve moisture. Flowing and one of the firming operations can often be accomplished in a single trip over the field. One additional tillage with a plain rod weeder just before planting will usually be all that is needed.

Local field and weather conditions will determine the kind and date of operation. Recommendations are given only as a guide; however, burning stubble to reduce residues and facilitate tillage is a highly undesirable practice.

Final pre-plant operations: Seedbed preparation is similar to that used for wheat and barley. Final seedbed preparation should take place just before planting. A good practice is to rodweed immediately before seeding to firm the seedbed and control early weed growth. A good seedbed should have moisture in the top three inches of soil.

Fertilization: Where fertilization will help wheat or barley, it may help safflower. Fertilization rates, dates of application, kinds of fertilizer, and safflower response are problems requiring more investigation. A soil fertility test should be made before applying fertilizer.

Drills: Safflower can be planted with any of the drills used to seed small grains. Proper use is more important than type of drill. In the southwestern part of the Panhandle semi-deep furrow disk drills or deep-furrow (hoe) drills are more commonly used. Surface disk drills are more common in the central and northern Panhandle area.

Date of Seeding: Planting dates are determined by local conditions. In most areas the period from May 1 to May 20 is best. April seedings are often satisfactory but weeds in the early seedings are usually more troublesome than they are when the crop is planted in May. Early seeded safflower is a poor competitor with weeds because of its slow seedling growth. Safflower seed requires a soil temperature of at least 40° F. to germinate.

Plantings after May 20 and especially those made in June run a risk of frost damage before the crop matures. Late plantings usually produce a lower yield and oil content than those made at the optimum time.
Rate of Seeding: Three to five plants per square foot give the best yield. This corresponds to 20-30 pounds of seed per acre. Less than three plants per square foot increases the weed problem and more than six frequently results in overcrowding. When planting safflower with a regular grain drill, a wheat setting of 1/2 bushel per acre will plant approximately 22 pounds of safflower. A wheat setting of 40 pounds per acre will deliver about 25 pounds of safflower. A planting rate of 15 pounds of safflower per acre will provide 3 to 4 seeds per square foot; 20 pounds per acre supplies about 5 seeds per square foot; and 25 pounds per acre supplies about 6 to 7 seeds per square foot. A drill setting for 20 pounds of barley will deliver 30 pounds of safflower per acre, since safflower seeds run through the drill faster than barley.

Depth of Planting: Seeding 1 to 2 inches deep in moist soil gives the best results. It is desirable that the seed be placed in moist soil but planting deeper than 3 or 4 inches frequently results in poor or complete loss of stands.

Weed Control: The best method of weed control is timely rotary hoeing or harrowing. For most effective weed control use a good rotary hoe and pull at 8 to 10 miles per hour. The first rotary hoeing or harrowing should occur before safflower and weeds can be seen. In early May plantings the best results are obtained by rotary hoeing 2-3 days before the safflower comes up. Successive crops of weeds may be taken out until safflower reaches a height of 5-6 inches. At this height, damage to safflower stands occurs. To date there is no recommended chemical to control weeds in safflower.

Diseases: The principal diseases of safflower are leaf rust, alternaria leaf spot, and root rot. The severity of the diseases in a particular year is determined by the organisms which are present and the growing conditions during that season. Unusually heavy summer rainfall and high humidity in 1962 created very favorable conditions for the development of alternaria leaf spot. Although the resulting loss of yield was substantial, no previous crop in western Nebraska has been significantly damaged by disease since safflower has been commercially grown in that area.

Treating safflower seed with one of the fungicides used for treating small grains helps to insure uniform stands of vigorous plants by killing fungi on the seeds and protecting the germinating seeds from soil borne organisms. Safflower should be rotated with other crops to avoid possible build-up of disease organisms that could result from continuous crops of safflower.

Harvesting: Safflower harvest does not require any special equipment. Only a few adjustments on the combine are necessary to do a good job of harvesting. A cylinder speed of 500 to 700 rpm's will properly thresh the crop and cause the least cracking of seed. Reel speeds should be set a little slower than the forward motion of the machine to avoid shattering heads with the reel. Safflower will mature 120-150 days after planting. Most of the leaves and stems will be brown and dry and heads will thresh easily when rubbed between the hands. Safflower seed should have a moisture content of 8 percent or less for safe storage.

Separating Weed Seeds from Safflower: Weed seeds are considered dockage in the marketing of safflower. They can be removed during harvest by using a "Scour-Kleen" or similarly effective attachment on the combine. A more economical but less effective method is to attach appropriately sized slotted screens to elevators and augers. Screen sizes should range from 1/16 to 3/36 x 1/2 inch. Many weed seeds can be removed by passing safflower seed over 1/4 inch hardware cloth (hail screen) as it is moved from combine to truck. Prompt removal of green weed seeds is necessary to prevent safflower from absorbing moisture from the damp weed seeds.
What Are the Essentials of Safflower Production?

1. Have a firm weed-free seedbed.
2. Rodweed the ground immediately before planting.
4. Plant shallow and be sure seed is pressed firmly into moist soil.
5. Do not cover seed more than 2 inches deep.
6. Plant between 20-30 pounds of seed per acre on dryland.
7. Rotary hoe or harrow the first time before weeds and safflower can be seen.
8. For subsequent crops of weeds, rotary hoe as needed until safflower reaches a height of 6 inches.
9. Use proper combine adjustments for harvesting.
10. Harvest as soon after maturity as possible.

The following staff members of the Nebraska Agricultural Experiment Station and Nebraska Agricultural Extension Service contributed information and assistance in preparation of this circular:

Laren Robinson, Assistant Professor, Box Butte Experiment Station
Walter Peterson, Research Associate, USDA, Scotts Bluff Experiment Station
J. H. Williams, Assistant Professor, Agricultural Experiment Station, Lincoln
C. R. Fenster, Extension Agronomist, Box Butte Experiment Station
J. C. Swinbank, Extension Agronomist, University of Nebraska,
Agricultural Extension Service
Paul Ehlers, Superintendent, Box Butte Experiment Station