1970

EC70-791 Agricultural Engineers' Digest: Insulation and Heat Loss

Follow this and additional works at: http://digitalcommons.unl.edu/extensionhist

http://digitalcommons.unl.edu/extensionhist/4015

This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Historical Materials from University of Nebraska-Lincoln Extension by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
KEEPING LIVESTOCK BUILDINGS WARM—How to Figure Insulation, Heat Loss and Supplementary Heat

Introduction

The growing numbers of both livestock and poultry being raised in enclosed confinement point to one thing—the desire, on the part of feeders, to reach and maintain optimum animal or bird performance.

Effective livestock buildings have a variety of features designed to provide an optimum environment of temperature, moisture, air movement and gas content; features like tight construction, insulation, vapor barriers, insulated doors and windows, and ventilation systems.

Tight Construction

The enclosed building should be reasonably tight. Loose construction and unplanned openings make it difficult to control the amount and movement of ventilation air.

Insulation

Insulation is any material that reduces the rate at which heat is transferred from one area to another. Although all building materials have some insulation value, the term "insulation" is generally reserved for a family of products designed to provide this one service.

Insulation has several functions. First, it helps conserve heat during periods of cold weather (Fig. 1). The conservation of animal or bird heat is necessary to maintain desirable housing conditions without the addition of unrealistic amounts of supplemental heat.

Second, insulation helps reduce the rate of heat gain in hot weather (Fig. 2). The temperature of the walls and roofs of buildings exposed to direct sunlight is as much as 50°F above air temperature.

One result of reducing heat loss and heat gain is a desirable reduction in the daily changes in indoor temperatures. Fig. 3 illustrates that an insulated building is cooler in the warm part of the afternoon and warmer in the cold early morning hours. The total temperature variation during the day is reduced.

Third, surface condensation—"sweating"—can be controlled. In a poorly insulated building, the inside ceiling and wall surfaces become cold in the winter, bringing discomfort to animals nearby. When the surface temperature is low enough, the air next to the surface becomes saturated and moisture condenses (Fig. 4). If the surface temperature is below freezing, frost forms. Well-insulated buildings reduce the possibility of condensation and frost by keeping the walls and ceiling relatively warm.

Fourth, correct foundation insulation reduces frost heaving, keeps floors warmer, and reduces heat losses. Insulate the outside of the foundation wall if possible (Fig. 5): the wall above the floor will be warmer, reducing condensation; the foundation below grade will be warmer, reducing the hazard of frost heaving; the outer edge of the floor will be warmer, increasing animal comfort; and total heat losses from the building will be reduced. Traditional methods of placing insulation inside the foundation wall and under the floor will reduce heat loss only through the floor.

Types of Insulation

The most common insulation consists of bulky, porous, lightweight materials with countless air spaces. The lighter the material is, the better are its insulating qualities. Generally, the more air pockets in the material, the better it insulates. Some building materials, like wood, are good insulators, while others, like concrete and metal, are poor insulators.

Manufactured insulation can be bought in several common forms. Answering the following questions

Figure 1. Insulation reduces the rate of heat loss from buildings during cold weather.

Figure 2. Insulation reduces the rate at which heat passes into a building during hot weather.

Major credit for this publication goes to O. E. Cross and E. A. Olson, Agricultural Engineers at the University of Nebraska.
Insulation reduces temperature extremes in a building.

Figure 3.

The diagram shows the temperature variations outside and inside a building with and without insulation.

Figure 4.

When warm, moist air comes into contact with a cold surface, condensation occurs. Insulation helps to control sweating by making the wall and ceiling surfaces warmer.

Figure 4.

The diagram illustrates the temperature difference between warm and cold surfaces with and without insulation.

Figure 5.

Method of placing perimeter insulation

Flexible insulation is packaged in bags. Almost all the common insulations—mineral wool, vermiculite, granulated cork, and others—come in this form. Loose-fill insulation is especially adapted for use in ceilings of existing buildings. Special precautions must be taken, however, when it is used in side walls. Settling does occur and some parts of the wall may not be adequately insulated. A vapor barrier must be provided on the warm, or room, side of the wall and ceiling.

Insulation batts and blankets are among the easiest and cheapest ways to add insulation to a farm building. They come in thicknesses of 1"-6" and in widths to fit either 16" or 24" stud spacings. Many of these have a vapor barrier attached to one side (see Vapor Barriers, p. 3).

Insulation board has some rigidity as well as insulation value. For use in livestock buildings, it must be treated to resist moisture. Some insulation boards have a vapor barrier on one side. Insulation board must be protected from physical damage by animals and equipment. Follow the manufacturer's recommendations for installing insulation board on spaced supports in a ceiling, roof, or wall.

Block or rigid insulation is usually used for perimeter or floor insulation. Fig. 5 shows how perimeter insulation should be placed to insulate the edges of a concrete floor. Materials used for perimeter insulation should withstand moisture. The materials most commonly used for this purpose are expanded polystyrene, foam glass, polyurethane or asphalt-impregnated rigid insulations.

Air space, as insulation, should not be less than 3/4" wide, because its effectiveness decreases rapidly as its width decreases. On the other hand, it should not be over about 4" wide, or convection currents will reduce its insulating value.

Reflective insulation is made from metallic foil such as aluminum foil, placed so that there are air spaces around it. It reflects almost all of the radiant heat that strikes it. Since only part of the heat to be retarded is radiant heat, reflective insulations need to have several air spaces to resist the flow of heat by conduction and convection. Reflective insulation is highly efficient in resisting the flow of heat downward. For this reason it is effective in keeping out summer heat and allows the interior of the building to cool rapidly at night. Foil insulation is not commonly used as winter insulation in farm buildings.

Additives to concrete have been suggested as a means of increasing the insulation quality while retaining the strength of ordinary concrete. Some materials (for example, expanded shale, ground corn cobs, or wood shavings) when substituted for some of the concrete aggregates will increase the insulation value of that concrete, BUT at a considerable reduction in the strength of the concrete. At present, no additive has been proved without bias to insulate concrete without a reduction in strength.
Selecting Insulation

All building materials have some insulation value, but the amount varies considerably. Fig. 6 shows how thick building materials would need to be to have the same insulation value as a 1” glass wool batt. For example, it takes 2.96” of plywood or 46.3” of concrete to equal the insulation value of 1” of glass wool.

Insulation, as well as other building materials, can be rated according to its ability to resist the flow of heat. This is commonly referred to as the “R” value. The relative insulation values of some of the common building materials are shown in Table I (Appendix). The R, or insulation value, may be given per inch of thickness, or for the total thickness of a material.

Other means of expressing the value of insulation are the “K”, “C”, or “U” values. The K value gives the amount of heat (in British thermal units) per hour that will pass through a piece of material 1” thick and 1’ square, when the temperature difference between the two sides is 1°F. The C value is like K, except it’s given for a total thickness: K glass wool = 0.27; C 3” glass wool = 0.09. The U value (over-all coefficient of heat transmission) is the amount of heat in Btu’s that will pass through a complete wall, ceiling, or floor construction, 1’ square, in one hour per degree of temperature difference between the air on the warm side and the air on the cold side. The U value is 1/R.

In the following discussion, the R value is used because the insulation value of a wall is easier to calculate with this value than with the others. Recently, the insulation industry adopted the R value and many insulations are marked with their R values.

Tables II, III, and IV (Appendix) show a number of the more common wall sections used in farm buildings today and the relative insulation value of each. These show that a small amount of insulation can make a big difference in heat-flow resistance. Table V shows insulation values for other types of construction, including roofs and ceilings.

The amount of insulation needed in farm buildings will vary according to winter temperatures. (See Fig. 7.)

Protect Insulation From Moisture
Use Vapor Barriers

In livestock buildings and other buildings where the relative humidity is high, it is extremely important to protect the insulation from moisture. Moisture, in the form of water vapor, tends to move from the warmer moist areas to the cooler outside. The moisture enters the wall, moves outward, and condenses when it reaches a cold enough area. Condensed water in the wall greatly reduces the value of the insulation and may damage the wall.

![Condensation schematic](image)

![Map showing winter temperature zones](image)

Figure 6. Material thickness required for equal insulation value.

<table>
<thead>
<tr>
<th>Climate Zone</th>
<th>Total Resistance (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls</td>
<td>Ceilings</td>
</tr>
<tr>
<td>Mild</td>
<td>9</td>
</tr>
<tr>
<td>Moderate</td>
<td>9 – 14</td>
</tr>
<tr>
<td>Cold</td>
<td>14</td>
</tr>
</tbody>
</table>

Figure 7. Recommended insulation

Amount of insulation to use depends on a number of factors. The map shows winter temperature zones. The table shows recommended “R” values for farm buildings.
To eliminate this flow of moisture, a supplemental vapor barrier should be placed near the warm side of the wall. (Fig. 8.) Immediately beneath the interior lining material is best.

Common vapor barriers are aluminum foil, 4 mil plastic film, and some of the asphalt-impregnated building papers. Table VI (Appendix) shows the water vapor transmission ratings of some of our common vapor barriers and building materials. The numbers represent the amount of vapor transmission, so the smaller numbers represent the better vapor barriers. A material with a rating below 1.0 is usually considered a good vapor barrier.

Consider the construction joints of the materials when comparing the water vapor transmission values. Vapor barrier materials are lapped to prevent moisture from entering through the joints. In concrete sandwich walls, if the concrete is mixed according to instructions, no vapor barrier is required.

Some rigid plastic foams are resistant to the absorption of moisture, but others—the low-density headboards—offer little resistance. The vapor transmission ratings of the different types of foam range from 0.4 to 5.8 perms. Use a separate vapor barrier if the perm rating is above 1.0.

In concrete sandwich walls, if the concrete is mixed 24” on center, depending on the thickness of the wall. Moisture will destroy a batt’s insulation value.

Consider the construction joints of the materials when comparing the water vapor transmission values. Vapor barrier materials are lapped to prevent moisture from entering through the joints. In concrete sandwich walls, if the concrete is mixed according to instructions, no vapor barrier is required.

Apply enough insulation. Learn the insulation value of the material and use enough to provide a satisfactory insulation value. Consider summer as well as winter conditions.

Don’t be concerned about the insulation value of the lining. Apply the insulation required inside the wall. Choose a lining material for its durability, ease of cleaning, and appearance.

Provide a good vapor barrier. Insulation materials that possess a satisfactory perm rating will still require vapor-tight joints.

Protect insulation from rodents and birds. Also protect against damage by animals, workers, and equipment. Few insulations applied with one side exposed have proved to be satisfactory in livestock buildings.

Insulate all areas. In metal-frame or masonry buildings columns or other assemblies may extend through the wall, and if uninsulated may be cold, wet, and frosted. Since wood has some insulating value, the studs and rafters in wood-framed buildings have not caused problems when used for livestock housing.

Characteristics of Heat and Moisture

A thorough understanding of heat transfer is beyond the scope of this presentation, but a basic understanding of heat and moisture behavior is necessary. Heat is defined as a form of energy which is transmitted from one body to another because of temperature difference. "Temperature" is a relative term for the magnitude of heat, the relative warmth of a material, and not the quantity of heat. The British thermal unit (Btu) is the quantity of heat required to raise one pound of water one degree Fahrenheit.

This heat is subdivided into latent heat and sensible heat. Latent heat is that heat involved in a change of state without a change of temperature. For example, latent heat is required to change water at 212°F into vapor at 212°F. Latent heat is usually given the symbol Qₜ.

Sensible heat is heat associated with a change of temperature, either increasing or decreasing. That is, sensible heat is required to change a room’s temperature. This is usable heat, which is symbolized Qₘ.

The total heat, Qₜ, is simply the summation of the latent and sensible heats. The equation is Qₜ = Qₗ + Qₘ. The quantity of each of these three heats is measured in Btu’s.

Heat is transferred from one location to another by conduction, convection, radiation, or any combination thereof. Conducted heat passes from one place to another by warming the material that
separates a warm area from a cold area. Con­

tractated heat is transmitted by a moving fluid, such

as circulating air. Radiation involves the passage

of heat through a space without warming the space,
such as the sun heating the earth.

In farm buildings, heat is lost or gained by

conduction through building materials, by air cur­

rents moving over the inside or outside surfaces,

and by radiation from warm surfaces.

Temperature-Moisture Relationships

The air exhaled by all animals contains moisture

in the form of vapor. For example, an average­

size lactating dairy cow will exhale over one pound

of water per hour. Body heat vaporizes water in

the lungs.

The body metabolism of the animal also causes

a release of sensible heat to surrounding air—

about 2,500 Btu/hr for a cow.

The released amount of latent and sensible heat

is variable. Total heat production per pound of body

weight increases with body weight and animal activ­

ity; it decreases with maturity and higher air

temperatures. The data given in Table VII (Ap­

pendix) are approximate and are for the conditions

stated.

The latent heats in Table VII are used to deter­

mine the amount of moisture in the air that must

be disposed of. The sensible heats in Table VII

are used not only for warming the incoming venti­

lation air, but also for maintaining the building

temperature.

The principle of moisture-holding capacities of

air at various temperatures and humidities is basic

to ventilation. A 20°F rise in air temperature
doubles the moisture-holding capacity of the air.

For example, 40°F air at 50% relative humidity
contains 18 grains of water per pound of air. If
this air is heated to 60°F at 50% relative humidity,
it can hold 36 grains per pound of air. Its moisture­
holding capacity has doubled. This phenomenon is

the reason that ventilation air removes moisture

from buildings.

Cooling air 20°F halves its water-holding capac­

ity. The excess may appear as condensation on
cooler surfaces within the building.

SENSIBLE HEAT GAIN = SENSIBLE HEAT LOSS

The sensible heat produced inside a building

must equal the sensible heat loss, if the building

temperature is to remain constant. The separate

factors are:

Heat gain will be from total animal heat, heat

from motors, lights, etc., and supplementary heat,

and can be expressed HEAT GAIN Qs = Qs +

Qm + Qw.

Heat loss will be from building loss, ventilation

loss, and latent heat to evaporate water, and can

be expressed HEAT LOSS Ql = Ql + Qv + Ql.

Since all the heat produced will eventually be

lost from the building if the inside temperature

remains constant, then Heat Loss = Heat Gain

or Ql = Qs.

Animal sensible heat + heat from motors, lights,

etc., + supplementary heat = building loss +

ventilation loss + latent heat to evaporate water.

Ql + Qv + Qs = Ql + Qv + Ql.

Heat Gain Design Procedure

At this point we are ready to determine the

quantity of heat which is available for ventilation

and heating the building. This may best be illus­

trated by an example.

Assume that we wish to house 150 hogs in a

growing-finishning operation. The hogs will go into

the house at 50 lbs and remain until they reach

200 lbs. How much heat will the hogs produce at

each weight? At 50 lbs we have:

Sensible heat produced = (Qs from Table VII) x

(number of hogs) x (number

of cwt. per hog) = (293) x (150) x (0.5)

= 22,000 Btu/hr

Using the same procedure for the 200-pound hogs

we get:

Sensible heat produced = (293) x (150) x (2.0) =

88,000 Btu/hr

Smaller pigs produce less heat and therefore

need more supplemental heat than larger ones. Use

22,000 Btu/hr to design the heater needed.

The sensible heat from motors, lights, etc., is

small when compared to the total and may be

ignored. The supplementary heat is what we want

to find—it is the "furnace" heat needed to maintain

desired conditions.

Temperature Balance Design Procedure

The loss of heat from the building involves losses

through the ceiling or roof, through the walls, and

through the perimeter or foundation. All the losses

are directly related to their respective insulating

values.

There are also ventilation losses because cold

air is heated and exhausted to remove excess

moisture from the building. The moisture comes

from the respiration of the animals, urine and feces,

and spilled drinking or cleaning water.

Building losses may be found by applying Qb =

(t - t) x A/R, where Qb is the building heat loss

in Btu/hr, A is the area of the wall or ceiling in

square feet, R is the resistance to heat transfer,

t = the inside temperature of the building, and

t = the temperature of the outside air.

Temperatures—The desired inside temperatures,

t, are given in Table VII, p. 12. Heat loss will

be greatest when outside temperatures, t, are low.

Experience and research have shown that the rea­

sonable design outside winter temperatures are

as shown in Fig. 10, p. 9.

It is assumed, for temperature and moisture

balance, that there is sufficient air circulation within

the shelter to provide fairly uniform conditions.
The design procedure for temperature balance may be best illustrated by using a sample problem. Assume a swine farrowing building as sketched below. Outside temperature will be -10°F. Let's work through the six steps on the accompanying "Work Sheet-Heat Loss," (p. 7) so our final result is the amount of supplemental heat required.

Step I
List the length, width, wall height, and foundation height and calculate and record the linear feet of wall, wall area, foundation area, and ceiling area. The resistance of the frame wall is calculated as follows from Table I:

<table>
<thead>
<tr>
<th>Material</th>
<th>R-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number 7. inside surface</td>
<td>0.68</td>
</tr>
<tr>
<td>1/2" plywood</td>
<td>0.63</td>
</tr>
<tr>
<td>2" wool (2 x 3.7)</td>
<td>7.40</td>
</tr>
<tr>
<td>air space</td>
<td>0.90</td>
</tr>
<tr>
<td>metal is zero</td>
<td>0</td>
</tr>
<tr>
<td>outside surface</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>9.78</td>
</tr>
</tbody>
</table>

The R for the 6-inch concrete foundation wall with 2-inch exterior insulation is 8.50 as found in Table IV (Appendix). Note: If concrete is uninsulated, R = .48, and heat loss is 35,000 Btu/hr instead of 1976 Btu/hr.

The R value for the ceiling is 13.94 from item 4, Table V (Appendix).

Step II
The Q values of the ceiling, walls, foundation, and perimeter are found by placing the appropriate values from Step I into the equations and multiplying.

The 2.22 in the perimeter equation assumes a 2-inch by 24" polystyrene perimeter insulation. Table V, No. 12.

The heat loss due to the building is a sum of the ceiling, wall, foundation and perimeter losses.

Step III
The ventilation losses Q_v are based upon the volume of air moved and the temperature differential. The volume of air is the building volume (L x W x H) times the recommended minimum ventilation as found in Table VII (assume a well-constructed tight building so that there is no leakage around doors and windows). Entering these values in the Q_v equation will give the ventilation heat loss. The 0.018 constant in the equation accounts for the specific heat of air (0.24) and the specific volume of air (0.075 lbs/cu ft).

Step IV
The total heat loss, Q_T, is the sum of Q_i from Step II and Q_v from Step III.

Step V
The total heat produced, Q_P, is as discussed previously and as outlined on the Work Sheet. Assume 330-pound sows.

Step VI
The supplemental heat required, Q_s, is the difference between the total heat loss, Q_T, in Step IV and the total heat produced, Q_P, in Step V.

From the example we found that we needed 26,015 Btu/hr of supplementary heat. The heating unit to install in this building should have a minimum heat output of about 27,000 Btu/hr.

If electric heat is desired, divide the supplementary heat by 3,413, giving the kilowatt hours needed. For our example above, 26,015 ÷ 3,413 = 7.6; therefore the electric heater should have a minimum size of 8 Kw-hr.
WORK SHEET—HEAT LOSS

Step I

Building Dimensions -- feet

<table>
<thead>
<tr>
<th>Length</th>
<th>Width</th>
<th>Wall height</th>
<th>Foundation height</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>24</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Linear feet of wall
(also foundation) = 120

Ceiling = 864
Wall area = 720
Foundation area = 240

R Values

<table>
<thead>
<tr>
<th>Ceiling</th>
<th>Wall</th>
<th>Foundation</th>
<th>Perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.94</td>
<td>9.78</td>
<td>8.50</td>
<td>2.22</td>
</tr>
</tbody>
</table>

\[
t_o = -10 \, ^\circ F
t_i = 60 \, ^\circ F
temp diff \quad (\Delta t) = 70 \, ^\circ F
\]

Step II

Heat loss due to building \((Q_B)\)

\[
Q_{Ceiling} = (\Delta t) \times (\text{Ceiling area}) \times (R_{ceiling})
\]

\[
Q_{Walls} = (\Delta t) \times (\text{Wall area}) \times (R_{wall})
\]

\[
Q_{Foundation} = (\Delta t) \times (\text{Foundation area}) \times (R_{foundation})
\]

\[
Q_{Perimeter} = (\Delta t) \times (\text{Linear feet of wall}) \times (R_{perimeter})
\]

\[
Q_B = Q_{Ceiling} + Q_{Walls} + Q_{Foundation} + Q_{Perimeter}
\]

Step III

Heat loss due to ventilation \((Q_V)\)

\[
Q_V = (\text{cu ft air/hr}) \times (\text{cu ft air/hr}) \times (\text{air changes/hr})
\]

\[
Q_V = (20,736) \times (70) \times (0.018)
\]

Step IV

Total heat loss

\[
Q_T = Q_B + Q_V
\]

Step V

Total heat produced,
\[
Q_S = (Q_{from \ Table \ VII}) \times \text{number of animals} \times \text{number of cwt per animal}
\]

Step VI

Amount of supplemental heat required \((Q_{SR})\)

\[
Q_{SR} = Q_V - Q_S
\]
Step I

Building Dimensions -- feet

<table>
<thead>
<tr>
<th>Length</th>
<th>Width</th>
<th>Wall height</th>
<th>Foundation height</th>
<th>Linear feet of wall</th>
<th>Ceiling area</th>
<th>Wall area</th>
<th>Foundation area</th>
</tr>
</thead>
</table>

Step II

Heat loss due to building \(Q_B \)

\[
Q_{\text{Ceiling}} = \frac{(\Delta t) \times (\text{Ceiling area})}{(R_{\text{ceiling}})}
\]

\[
Q_{\text{Walls}} = \frac{(\Delta t) \times (\text{Wall area})}{(R_{\text{wall}})}
\]

\[
Q_{\text{Foundation}} = \frac{(\Delta t) \times (\text{Foundation area})}{(R_{\text{foundation}})}
\]

\[
Q_{\text{Perimeter}} = \frac{(\Delta t) \times (\text{Linear feet of wall})}{(R_{\text{perimeter}})}
\]

\[
Q_B = Q_{\text{Ceiling}} + Q_{\text{Walls}} + Q_{\text{Foundation}} + Q_{\text{Perimeter}}
\]

Step III

Heat loss due to ventilation \(Q_V \)

\[
Q_V = \text{(cu ft air/hr) times (\Delta t) times (0.018)}
\]

\[
Q_V = (\text{(L x W x H) times (air changes/hr)})
\]

\[
Q_V = (\text{_____ x _____ x _____}) \times (_____)
\]

\[
Q = (\text{_____}) \times (_____) \times (_____)\]

\[
Q = \text{_____ ft}^3/\text{hr}
\]

\[
Q_V = \text{_____ Btu/hr}
\]

Step IV

Total heat loss \(Q_T = Q_B + Q_V \)

\[
Q_T = \text{_____ Btu/hr}
\]

Step V

Total heat produced, \(Q_S = (Q_S \text{ from Table VII}) \times (\text{number of animals}) \times (\text{number of cwt per animal})\)

\[
Q_S = \text{_____ x _____ x _____) = _____ Btu/hr}
\]

Step VI

Amount of supplemental heat required \(Q_{SR} \)

\[
Q_{SR} = Q_T - Q_S
\]

\[
Q_{SR} = (_____) - (_____)\]

\[
Q_{SR} = \text{_____ Btu/hr}
\]
Figure 10. Winter Design Temperature.
Table 1. Insulation Values for Some Commonly Used Materials.\(^1\)

<table>
<thead>
<tr>
<th>Material</th>
<th>Insulation value (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per inch thickness</td>
</tr>
<tr>
<td>1. Batt or blanket insulation</td>
<td></td>
</tr>
<tr>
<td>Glass wool, mineral wool</td>
<td></td>
</tr>
<tr>
<td>or fiber glass</td>
<td>3.70</td>
</tr>
<tr>
<td>wood fiber</td>
<td>4.00</td>
</tr>
<tr>
<td>2. Fill-type insulation</td>
<td></td>
</tr>
<tr>
<td>Glass or mineral wool</td>
<td>3.51</td>
</tr>
<tr>
<td>Vermiculite (expanded)</td>
<td>2.13 to 2.27</td>
</tr>
<tr>
<td>Shavings or sawdust</td>
<td>2.22</td>
</tr>
<tr>
<td>Paper or pulp products</td>
<td>3.57</td>
</tr>
<tr>
<td>3. Rigid insulation</td>
<td></td>
</tr>
<tr>
<td>Wood fiber sheathing</td>
<td>2.27 to 2.63</td>
</tr>
<tr>
<td>Expanded polystyrene, extruded</td>
<td>3.85</td>
</tr>
<tr>
<td>Expanded polystyrene, molded</td>
<td>3.57</td>
</tr>
<tr>
<td>Urethane foam (aged)</td>
<td>5.88</td>
</tr>
<tr>
<td>Glass fiber</td>
<td>4.01</td>
</tr>
<tr>
<td>4. Ordinary building materials</td>
<td></td>
</tr>
<tr>
<td>Concrete, poured</td>
<td>0.08</td>
</tr>
<tr>
<td>Plywood, 3/8"</td>
<td>1.25</td>
</tr>
<tr>
<td>1/2"</td>
<td>1.25</td>
</tr>
<tr>
<td>Hardboard, 1/4"</td>
<td>0.72</td>
</tr>
<tr>
<td>Cement asbestos board, 1/8"</td>
<td>0.83</td>
</tr>
<tr>
<td>Lumber (fir, pine) 25/32"</td>
<td>1.02</td>
</tr>
<tr>
<td>Wood beveled siding 1/2" x 8"</td>
<td>0.81</td>
</tr>
<tr>
<td>Asphalt shingles</td>
<td>0.44</td>
</tr>
<tr>
<td>Wood shingles</td>
<td></td>
</tr>
<tr>
<td>5. Window glass, includes surface conditions</td>
<td></td>
</tr>
<tr>
<td>Single-glazed</td>
<td>0.89</td>
</tr>
<tr>
<td>Single-glazed with storm windows</td>
<td>1.79</td>
</tr>
<tr>
<td>Double-pane insulating glass</td>
<td>1.5 to 1.75</td>
</tr>
<tr>
<td>6. Air space (3/4" or larger)</td>
<td>0.90</td>
</tr>
<tr>
<td>7. Surface conditions</td>
<td></td>
</tr>
<tr>
<td>Inside surface</td>
<td>0.68</td>
</tr>
<tr>
<td>Outside surface (15 mph wind)</td>
<td>0.17</td>
</tr>
<tr>
<td>8. Reflective-type insulation</td>
<td></td>
</tr>
<tr>
<td>Aluminum foil Ceiling</td>
<td>5.00</td>
</tr>
<tr>
<td>2 air spaces</td>
<td>7.14</td>
</tr>
</tbody>
</table>

\(^1\) From ASHRAE Handbook of Fundamentals, 1967.
\(^2\) Mean temperature of 75°F.
Table II. Insulation Values for Frame Construction With Plywood Siding.

<table>
<thead>
<tr>
<th>Material Configuration</th>
<th>R Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2" Plywood</td>
<td>1.48</td>
</tr>
<tr>
<td>1/2" Insulation Board</td>
<td>3.69</td>
</tr>
<tr>
<td>2" Batt Insulation</td>
<td>10.41</td>
</tr>
</tbody>
</table>

Table III. Insulation Values for Frame and Metal Construction With Metal Siding.

<table>
<thead>
<tr>
<th>Material Configuration</th>
<th>R Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4" Insulating Sheathing</td>
<td>0.85</td>
</tr>
<tr>
<td>2" Batt Insulation</td>
<td>2.83</td>
</tr>
<tr>
<td>1" Urethane Foam</td>
<td>6.73</td>
</tr>
</tbody>
</table>

Table IV. Insulation Values for Concrete Wall Construction.

<table>
<thead>
<tr>
<th>Material Configuration</th>
<th>R Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4" Concrete</td>
<td>1.17</td>
</tr>
<tr>
<td>3-Core, 8" Lightweight Block</td>
<td>1.96</td>
</tr>
<tr>
<td>2-Core, 8" Lightweight Block</td>
<td>5.88</td>
</tr>
<tr>
<td>2" Molded Polystyrene</td>
<td>8.50</td>
</tr>
<tr>
<td>5½" Concrete tilt-up Sandwich Panel</td>
<td>8.27</td>
</tr>
</tbody>
</table>
Table V. Insulation Values for Other Construction.

<table>
<thead>
<tr>
<th>Roofs and Ceilings</th>
<th>“R”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Asphalt shingles, wood sheathing, vented attic space, 1/2” insulating board ceiling</td>
<td>4.95</td>
</tr>
<tr>
<td>2. Same as above, but wood shingles</td>
<td>5.45</td>
</tr>
<tr>
<td>3. Same as above, but metal roofing on nailing girts.</td>
<td>3.53</td>
</tr>
<tr>
<td>4. Metal roofing on nailing girts, vented attic, 3” blanket insulation (mineral wool) 1/2” plywood ceiling</td>
<td>13.94</td>
</tr>
<tr>
<td>5. Same as 4, except 4” fill insulation (glass or mineral wool)</td>
<td>16.88</td>
</tr>
<tr>
<td>6. Same as 4, except 6” blanket insulation</td>
<td>25.04</td>
</tr>
<tr>
<td>7. Metal roof on nailing girts, hay mow, 12” of hay or straw</td>
<td>20 Approx.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Doors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Wood siding, beveled, 3/4” x 10”</td>
</tr>
<tr>
<td>9. Plywood, 3/4” blanket insul, between 2 sheets 1/2” plywood</td>
</tr>
<tr>
<td>10. Plywood, 1 1/2” blanket insul. between 2 sheets 1/2” plywood.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Floor Perimeter (per foot of length of exterior wall.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Concrete, without perimeter insulation</td>
</tr>
<tr>
<td>12. Concrete, with 2” x 24” perimeter insulation</td>
</tr>
</tbody>
</table>

Table VI. Water Vapor Transmission of Common Building Materials, Perms

1 Perm = 1 Grain/hr-ft²-in.hg

<table>
<thead>
<tr>
<th>Vapor Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum foil (1 mil)</td>
</tr>
<tr>
<td>4 mil polyethylene (plastic film)</td>
</tr>
<tr>
<td>Kraft and asphalt building paper</td>
</tr>
<tr>
<td>Two coats of aluminum paint (in varnish) on wood</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Common Building Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” extruded expanded polystyrene</td>
</tr>
<tr>
<td>15 lb tar felt building paper</td>
</tr>
<tr>
<td>1/2” insulation board, uncoated</td>
</tr>
<tr>
<td>1/4” 3-ply exterior plywood</td>
</tr>
</tbody>
</table>

4” brick masonry	0.8
4” poured concrete wall	0.8
4” glazed tile masonry	12
8” concrete block	2.4

1 From ASHRAE Handbook of Fundamentals, 1967

Table VII. Animal Heat Production

<table>
<thead>
<tr>
<th>Type of heat</th>
<th>Sow & Litter 1</th>
<th>Hogs 2</th>
<th>Poultry 3</th>
<th>Dairy Cattle 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensible heat (Qs)</td>
<td>320 Btu/hr cwt</td>
<td>293 Btu/hr cwt</td>
<td>31.2 Btu/hr bird</td>
<td>230 Btu/hr cwt</td>
</tr>
<tr>
<td>Latent heat (QL)</td>
<td>205</td>
<td>127</td>
<td>13.0</td>
<td>110</td>
</tr>
<tr>
<td>Total heat (Qt)</td>
<td>525</td>
<td>420</td>
<td>44.2</td>
<td>340</td>
</tr>
</tbody>
</table>

1. At 60°F temperature inside building.
2. At 50°F building temperature and 150 lb animal.
3. For 5 lb bird at a building temperature of 55°F.
4. For dairy cattle in general at 50°F building temperature.

Approximate Ventilation Rates

<table>
<thead>
<tr>
<th>Minimum (winter)</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hogs...........3 air changes per hour</td>
<td>Hogs...........60 to 90 air changes per hour</td>
</tr>
<tr>
<td>Dairy.........6 air changes per hour</td>
<td>Dairy.........24 air changes per hour</td>
</tr>
<tr>
<td>Poultry.......30 cubic feet per hour per bird</td>
<td>Poultry.......300 cubic feet per hour per bird</td>
</tr>
</tbody>
</table>

Extension Service, University of Nebraska College of Agriculture Cooperating with the U. S. Department of Agriculture and the College of Home Economics
E. F. Frolik, Dean
J. L. Adams, Director