Chemical and Biomolecular Engineering, Department of


Date of this Version


Document Type



ACS Synth Biol. 2022 November 18; 11(11): 3724–3732. doi:10.1021/acssynbio.2c00325.


HHS Public Access.


Pseudomonas putida KT2440 is an emerging microbial chassis for bio-based chemical production from renewable feedstocks and environmental bioremediation. However, tools for studying, engineering, and modulating protein complexes and biosynthetic enzymes in this organism are largely underdeveloped. Genetic code expansion for the incorporation of unnatural amino acids (unAAs) into proteins can advance such efforts and, furthermore, enable additional controls of biological processes of the strain. In this work, we established the orthogonality of two widely used archaeal tRNA synthetase and tRNA pairs in KT2440. Following the optimization of decoding systems, four unAAs were incorporated into proteins in response to a UAG stop codon at 34.6-78% efficiency. In addition, we demonstrated the utility of genetic code expansion through the incorporation of a photocrosslinking amino acid, p-benzoyl-L-phenylalanine (pBpa), into glutathione S-transferase (GstA) and a chemosensory response regulator (CheY) for protein-protein interaction studies in KT2440. This work reported the successful genetic code expansion in KT2440 for the first time. Given the diverse structure and functions of unAAs that have been added to protein syntheses using the archaeal systems, our research lays down a solid foundation for future work to study and enhance the biological functions of KT2440.