Published Research - Department of Chemistry


Date of this Version



Published by American Institute of Physics. J. Chem. Physics VOLUME 120, NUMBER 19, 15 MAY 2004. ©2004 American Institute of Physics. Permission to use.


Ab initio all-electron molecular-orbital calculations are carried out to study the structures and relative stability of low-energy silicon clusters (Sin , n=12– 20). Selected geometric isomers include those predicted by Ho et al. [Nature (London) 392, 582 (1998)] based on an unbiased search with tight-binding/genetic algorithm, as well as those found by Rata et al. [Phys. Rev. Lett. 85, 546 (2000)] based on density-functional tight-binding/single-parent evolution algorithm. These geometric isomers are optimized at the Møller–Plesset (MP2) MP2/6-31G(d) level. The single-point energy at the coupled-cluster single and double substitutions (including triple excitations) [CCSD(T)] CCSD(T)/6-31G(d) level for several low-lying isomers are further computed. Harmonic vibrational frequency analysis at the MP2/6-31G(d) level of theory is also undertaken to assure that the optimized geometries are stable. For Si12–Si17 and Si19 the isomer with the lowest-energy at the CCSD(T)/6-31G(d) level is the same as that predicted by Ho et al., whereas for Si18 and Si20 , the same as predicted by Rata et al. However, for Si14 and Si15 , the vibrational frequency analysis indicates that the isomer with the lowest CCSD(T)/6-31G(d) single-point energy gives rise to imaginary frequencies. Small structural perturbation onto the Si14 and Si15 isomers can remove the imaginary frequencies and results in new isomers with slightly lower MP2/6-31G(d) energy; however the new isomers have a higher single-point energy at the CCSD(T)/6-31G(d) level. For most Sin (n=12– 18,20) the low-lying isomers are prolate in shape, whereas for Si19 a spherical-like isomer is slightly lower in energy at the CCSD(T)/6-31G(d) level than low-lying prolate isomers.

Included in

Chemistry Commons