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Review

Leveraging eco-evolutionary models for gene
drive risk assessment

Matthew A. Combs,1,* Andrew J. Golnar,1 Justin M. Overcash,2 Alun L. Lloyd,3 Keith R. Hayes,4

David A. O’Brochta,5 and Kim M. Pepin1

Engineered gene drives create potential for both widespread benefits and irre-
versible harms to ecosystems. CRISPR-based systems of allelic conversion
have rapidly accelerated gene drive research across diverse taxa, putting field
trials and their necessary risk assessments on the horizon. Dynamic process-
based models provide flexible quantitative platforms to predict gene drive out-
comes in the context of system-specific ecological and evolutionary features.
Here, we synthesize gene drive dynamic modeling studies to highlight research
trends, knowledge gaps, and emergent principles, organized around their ge-
netic, demographic, spatial, environmental, and implementation features. We
identify the phenomena that most significantly influence model predictions, dis-
cuss limitations of biological complexity and uncertainty, and provide insights to
promote responsible development and model-assisted risk assessment of gene
drives.

Dynamic models enable gene drive research and risk analysis
Gene drives are naturally occurring or engineered genetic systems that cause biased inheritance
patterns of specific alleles [1]. Most engineered gene drives seek to reduce a target popula-
tion’s (see Glossary) abundance (i.e., suppression drives) or modify phenotypes of individuals
in a target population (i.e., replacement drives). Technological development has rapidly increased
the available strategies for gene drive design and implementation, revolutionizing our capacity to
address broad-scale ecological issues [2,3]. Gene drives may improve agricultural security and
biodiversity conservation by eradicating pest species [4,5], or advance public health goals by al-
tering insect vectorial capacity [6]. A phased testing pathway guides the development and testing
of these genetically modified organisms (Box 1) [7,8], but significant uncertainty remains about the
risks gene drives may pose to human and natural communities [9].

Risk assessments (RAs; e.g., environmental, socio-economic, epidemiological) guide regulatory
decisions governing the testing and implementation of biotechnologies intended for environmen-
tal release. They generally seek to identify causal pathways by which sources of harm
(i.e., hazards) create adverse outcomes, determine the likelihood of experiencing harm in the
context of exposure (i.e., risk), evaluate strategies to mitigate risk, and provide recommendations
for decision-makers. Risk-based decision frameworks are applied across diverse domains in-
cluding engineering, finance, medicine, and ecotoxicology [10]. Engineered gene drive systems
require case-by-case RAs because each construct could act differently across the biological
scales of individuals, populations, and communities. The theoretical potential to spread and per-
sist in environments presents several challenges to RAs that differ from other environmental con-
texts where they are applied. (i) Gene drive traits undergo continuous evolutionary pressures
before fixation or loss, as they disperse through the population’s natural reproductive behaviors
and persist in gene pools for many generations (particularly for low-threshold drives intended

Highlights
As development of gene drive systems
accelerates and diversifies, predicting
outcomes for target populations and
the potential for human and environmen-
tal risks requires accounting for numer-
ous eco-evolutionary processes.

Gene drive dynamic models quantify the
influence of features across genetics
(e.g., resistancedevelopment and stand-
ing genetic diversity), demographics
(e.g., mating systems and inbreeding),
spatial ecology (e.g., dispersal and com-
petition), biotic and abiotic environments
(e.g., climate variation and landscape
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(e.g., introduction size and timing) on
gene drive outcomes.

Synthesizing published gene drive
models reveals research trends, knowl-
edge gaps, and emergent principles.
Modeling limitations and tradeoffs are
discussed.
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proach within the existing phased path-
way for gene drive research improves
utility for risk assessment.
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for population replacement). (ii) Their potential spatial scope (sometimes continental) invokes
greater variation in risk-relevant parameters than experienced previously with genetically modified
organisms.

Gene drive developers and risk assessors must therefore consider how eco-evolutionary features
of gene drive constructs and target populations interact across biological scales, from molecular
processes regulating allelic conversion, to demographic and ecological processes influencing
fitness of transgenic individuals, to environmental contexts and implementation strategies
impacting the spatial spread and persistence of gene drive constructs within and among
populations. Each application produces unique risks, desired outcomes, and stakeholder
priorities, requiring data collection across different contexts. These considerations are difficult
to represent, logically organize, and investigate with qualitative or non‐mechanistic statistical
methods, whereas dynamic process models are well suited to this task.

Dynamic process models are mathematical representations of systems over time. They are used
to understand many eco-evolutionary processes from gene regulation [11,12], to zoonotic dis-
ease emergence, [13,14] to species invasion [15,16]. Dynamic models can also predict the
spread of gene-drive-modified organisms (GDMOs) by replicating in silico processes that induce
changes in population allele frequencies or absolute counts across a variety of biological, tempo-
ral, and spatial scales [17]. For example, gene drive dynamic models (GDDMs) can describe how
molecular dynamics influence gene drive evolutionary stability [18], how mating systems affect
minimum release thresholds [19], or how landscape heterogeneity influences speed of drive
spread [20]. For risk assessors and regulators focused on identifying, minimizing, and managing
adverse outcomes andmeeting desired outcome criteria, GDDMs can provide valuable insight by
comparing genetic technologies and implementation strategies under diverse ecological, social,
and fiscal contexts [21].

Modelers use variousmethods to construct GDDMs. Deterministic approaches describe average
outcomes from biological processes and parameters, ignoring the influence of random events.
However, stochastic modeling frameworks capture how random events may shift the trajectory
of small populations (e.g., genetic drift and Allee effects), making them particularly useful for

Box 1. Phased testing pathway for gene drive development

A phased testing pathway has been recommended to guide the development and testing of gene drive products by national
and international advisory groups (e.g., World Health Organization, National Academy of Science, Engineering, and Medicine)
[6,7]. This pathway promotes the simultaneous evaluation of risks posed by gene drives (e.g. environmental, socioeconomic,
and epidemiological) while allowing developers to study the critical factors influencing gene drive outcomes under progres-
sively decreasing confinement and containment. Phase 0 encompasses research preparation, inwhich a gene drive construct
is designed for a specific target population and strategies for risk assessment, management, andmitigation are established. In
Phase 1, indoor laboratory-based research begins, as researchers optimize the genetic conversion efficacy of the gene drive
system and evaluate fitness costs for transgenic individuals in controlled environments. Phase 1 trials allow for the collection of
empirical data overmultiple generations while under strict containment, which can be used to informGDDMs and risk assess-
ments. Progression to Phase 2 involves contained outdoor field trials, using either constructedbarriers (e.g., netting or fencing)
or geographic isolation (e.g., islands), allowing the study of environmental complexity such as climatic variability, interspecific
interactions, and spatial processes. Phase 2 trials allow for more realistic evaluation of transgenic fitness, population out-
comes, and ecosystem effectswhile informing risk assessments and regulatory decisions. Phase 3 involves releasing GDMOs
into natural environments without any physical containment. Both Phase 2 and 3 require site-specific regulatory approval from
nations in whichGDMOs are released. Finally, Phase 4 involves post-releasemonitoring and surveillance to evaluate true gene
drive efficacy and adverse outcomes. For some gene drives, Phase 4 may also involve the release of additional drive con-
structs to modulate or reverse initial systems. To date, no gene drive projects have been approved for Phase 2 field trials,
though several have begun Phase 1 experiments. It is important to recognize that the phased testing pathway is a non-binding
recommendation, and regulatory decisions about GDMO introductions will ultimately be nation-specific unless international
agreements are ratified into law. Thus, while the phased testing pathway recommendations are designed to provide decision
checkpoints between phases, in practice, development phases may overlap.

Glossary
Allelic conversion: process by which
genetic systems change an individual’s
genotypic composition, usually with the
intent of altering inheritance patterns
and/or the viability or fitness of
individuals with specific genotypes.
Dispersal: geographic movement of an
organism, usually from their natal
location to a different location in search
of resources or mates.
Dynamic process model:
mathematical representation of
interrelated processes that describe
system properties overtime.
Hazard: potential source of harm
expected to illicit adverse outcomes
for natural ecosystems, human
communities, or other systems over
space and time.
Interference drive: gene drive
mechanism by which a genetic system
restricts or permits the development of
offspring depending on presence or
absence of specific alleles, also called
meiotic drive.
Remediation drive: gene drive
mechanism intended to reverse or alter
the outcomes of a previously introduced
gene drive.
Replicator drive: gene drive
mechanism by which a specific allele is
replaced with a desirable allele through
homology directed repair, often
achieved through site-directed cleavage
by a CRISPR-Cas9 system.
Resistance development: process by
which individuals evolve to prevent allelic
conversion by a gene drive mechanism.
Risk: likelihood of adverse outcomes
caused by a hazard, given degree of
exposure.
Target population: group of
conspecific individuals through which a
gene drive construct is intended to
spread. The geographic scale and
genetic specificity of a target population is
specific to each gene drive project.
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modeling suppression gene drive systems as they approach extinction [22,23]. Often gene drives
are modeled as discrete-time systems that record population characteristics across evenly
spaced generations, while continuous-time systems allow more realistic simulations of overlap-
ping generations [24]. GDDMs can explore the spatial dynamics of gene drive spread using 1D
wave forms [25,26] or through metapopulation or individual-based simulations on a 2D grid
[27,28] or across continuous space [29].

When robustly validated, GDDMs provide a unique platform for geneticists to illustrate how eco-
logical and evolutionary processes interact to mediate the consequences of novel biotechnol-
ogies [30]. However, navigating the diverse genetic approaches, hypotheses, and biological
features examined across models remains challenging [31]. Here, we synthesize research trends
and knowledge gaps across published GDDMs and provide an organizing framework to improve
their utility for RA applications. Review and analysis methods are provided in Supplemental
Text 1. Resulting data table and citations of reviewed GDMM publications are provided in
Supplemental File 1 and Supplemental Text 2, respectively.

Trends and gaps in gene drive modeling
Across published GDDMs, 34 common biological features informing model structure and param-
eters emerged, falling into five categories of increasing biological scale: genetics, demography,
spatial ecology, biotic and abiotic environment, and implementation strategy (Figure 1). Category
descriptions and feature definitions are provided in Supplemental Texts 3 and 4.

GDDM publication rate surged over the past 6 years (2011–2016: 3.7/year, 2017–2022:
13.2/year) (Figure 2A), driven largely by adoption of CRISPR/Cas9 replicator strategies over
interference and underdominance strategies. These strategies are not mutually exclusive
descriptors and gene drive constructs may use combined strategies [32] (Figure 2B). Although
modelers once focused primarily on replacement drives and mosquitoes, drive goals and target
taxa have diversified over time (Figure 2C,D), with increasing attention on suppression or
remediation drives targeting mammals, fruit flies, and other species.

While roughly half of GDDM publications mention relevance of gene drive-associated risks
(Figure 2A), to date, most GDDMs have focused on questions of efficacy, theory, and the effects
of individual model features rather than on RA applications. Most published GDDMs are relevant
to early-phase projects and reasonably ignore features adding unnecessary complexity. Such
basic research efforts are necessary and valuable, but as drive projects seek field trials and reg-
ulatory approval GDDMs will require increased focus on system behavior and feature interactions
specifically related to risk. Still, the dearth of GDDMs incorporating features of biotic and abiotic
environments (Figure 3) is striking given the potential risks of unexpected spread through intro-
gression or hybridization, or bottom-up ecosystem changes driven by rapid population declines
[5,33]. Understanding gene drive efficacy and spatial spread in variable environments and in the
context of interacting populations are important requirements for gene drive RAs [34,35].
Features in this category were recommended for future study more often than they were in-
cluded, suggesting researchers recognize this research gap. Several modeling platforms facilitate
simulation of multispecies eco-evolutionary interactions and seasonal variations (e.g., Skeeter
Buster, SLiM v4.0, and MGDrivE2) [36–38]. Modeling the influence of biotic and abiotic environ-
ments is hampered by a lack of relevant data describing multispecies interactions and potential
for drive spread via hybridization and introgression.

Though resistance development to drive mechanisms exhibits strong influence on population
outcomes in greater proportion than any other genetic feature, fewer than half of GDDMs account
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for its role (Figure 3). Characterizing and circumventing processes that cause resistance to gene
drive systems has been a major concern for developers and risk assessors because strong se-
lective pressure for resistant alleles can cause drive failure, particularly for homing CRISPR/
Cas9 systems [39]. GDDMs have been valuable for identifying how evolutionary, life history,
and spatial processes interact with resistance development to shape gene drive outcomes
[18,40,41]; understanding and incorporating these eco-evolutionary dynamics is important for
modelingmore complex processes. Many potential hazards recognized by RA involve the causes
and consequences of resistance development [8], suggesting its inclusion and exploration should
be prioritized across risk-focused GDDM efforts.

Genetics

Transgenic fitness costs

Drive conversion efficacy

Genetic dominance

Resistance development

Genetic expression

Resistant allele fitness

Evolutionary stability

Genomic target site characteristics

Standing genetic diversity
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Figure 1. Common features of gene drive dynamic models (GDDMs). Each GDDM will be first developed based on unique project characteristics such as the
genetic system of allelic conversion, outcome goals, and targeted population. Different categories of features are likely to be incorporated to reflect study goals along
the phased research pathway, described in arrow labels.
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Figure 2. Temporal trends by year across gene drive dynamic models (GDDMs). (A) GDDMs published per year (total bar height) and the subset of those that
discussed relevance to drive-associated risks (orange stripes). Yearly breakdown of GDDMs simulating different gene drive genetic strategies (B), drive goals (C), and drive
targets (D) across publications. Note that some publications reported multiple models with different gene drive strategies, goals, and/or targets.
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To date, GDDMs exhibit limited attention to mixed management strategies (i.e., gene drives im-
plemented alongside other management tools) (Figure 3). Population and public health manage-
ment with gene drives will necessarily involve fiscal, practical, and temporal constraints. Modeling
conventional pest management and/or disease reduction strategies in comparative or comple-
mentary frameworks improves inferences on the feasibility of accomplishing gene drive goals
within these contexts [42,43]. Although many modeling studies reasonably exclude mixed man-
agement to simplify study questions, gene drive implementation will not occur in a vacuum, but as
a new tool within ongoing management efforts.

Transgenic fitness costs were included in models more than any other feature, indicating their
fundamental importance to the trajectory of gene drive systems (Figure 3). Fitness costs appear
ubiquitous across engineered drives, where increased fitness costs generally decrease drive suc-
cess likelihood. Although high effect sizes were reported for less than half the models that varied
fitness costs (Figure 3), they were commonly found to influence, and be influenced by, other fea-
tures such as inbreeding [44], dispersal [45], and ecological release strategy [46], highlighting
the capability of GDDMs to reveal how eco-evolutionary relationships interact to structure gene
drive outcomes. Many studies assume fitness costs are stable across time and environmental
variation but empirical data on relative fitness of transgenic individuals for parameterizing models
remains limited and system specific [47]. Our understanding of transgenic fitness costs,
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Figure 3. Summary of model features. Frequency of feature inclusion (total bar height) and variation (lighter interior bar) across published gene drive dynamicmodeling
studies (A). Proportion of studies reporting a high effect size for specific features, scaled by the number of studies for which that feature was varied (B). Bar labels (white text)
denote total number of studies reporting high effect size. Ratio of studies mentioning a feature as important for future study compared to the number of studies that
included the feature in a gene drive model (C).
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particularly in the context of additional system complexity, limits our ability to accurately predict
real-world outcomes and for the applicability of gene drive models in RAs.

Network analysis of shared feature inclusion within studies indicated that commonly included fea-
tures are commonly studied together to provide insight into eco-evolutionary dynamics between
critical processes such as spatial structure and transgenic fitness costs or resistance develop-
ment and drive conversion efficacy (Figure 4). However, several feature pairs appear to deserve
increased research scrutiny, as they were commonly included across studies individually but

TrendsTrends inin GeneticsGenetics

Figure 4. Network heatmap of shared feature inclusion within individual DPGMs. Heatmap color indicates the number of studies in which both features were
included. Feature labels are organized and colored based on categories defined in Figure 1.
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rarely studied together, despite potential interdependence. These include how genomic target
site characteristic interacts with drive conversion efficacy (e.g., via sequence diversity or func-
tional constraints) or how initial demographic conditions interact with demographic release strat-
egy (e.g., via shifting release thresholds).

Emergent principles of gene drive dynamics
Directly comparing model outcomes related to specific GDDM features remains difficult due to
the diversity of interactions among taxa-specific traits, receiving environment ecology, gene
drive mechanisms, and mathematical assumptions within models. Despite this challenge, several
generalizable principles emerged when examining results reported for the top two features in
each category, based on proportion of high effect sizes. These features strongly influenced
gene drive outcomes in >50% of studies where they were varied (Figure 3).

‘Principle 1: resistance development and standing genetic diversity are key limitations to gene
drive success’. For homing-based drives, variation at homing sites due to standing genetic diver-
sity in target populations increases the likelihood of resistant allele formation and reduces the like-
lihood of drive success [43,48–52], prompting research on methods to reduce resistance
development. For example, targeting functionally constrained genes can reduce resistant
allele formation [53]. While early studies indicated that increasing the number of gRNAs
(i.e., multiplexing) causes exponential decreases in resistant allele generation [23], recent models
incorporating realistic timing of cleavage and repair indicate an optimal number of gRNAs (usually
2–8) exists for each system [54]. Alternative gene drive architectures such as split-drive systems
can reduce exposure to adverse gene drive outcomes while allowing study of resistance forma-
tion within wild-type populations [55].

‘Principle 2: deviations from perfectly monogamous and non-assortative mating systems strongly
influence population outcomes’. Asymmetric mating systems (e.g., polygyny and polyandry) are
almost always found to reduce drive success probability relative to randommating [19,56,57]. An
exception to this trend is a twin-drive system that bypasses sperm competition by enabling ter-
minator males to deliver toxic effector seminal proteins that kill or sterilize females, where polyg-
ynous mating increases drive success by increasing the probability that females mate with
GDMO males [58]. Developers should consider leveraging asymmetric mating systems to im-
prove outcomes in sex biasing drives. Studies including inbreeding always found that increased
sibling mating reduces gene drive speed and success likelihood, while highlighting the important
role of premating dispersal, which alleviates these effects [40,41,44]. Predicting the evolution of
increased inbreeding or the magnitude of Allee effects experienced across small populations re-
mains difficult and target-species dependent.

‘Principle 3: dispersal behavior exerts system-dependent effects on gene drive dynamics’. High
dispersal rates can accelerate spread of gene drive constructs to less connected subpopulations
[59], but also limit drive success when locally extinct subpopulations are recolonized by wild-type
individuals [27]. Lower dispersal rates can improve the likelihood of successful remediation drives
[60] but also lower the likelihood of target populations experiencing sufficient changes within
anticipated time periods [61]. The desirability of these dispersal effects depends on the intended
extent of gene drive spread; excess long-distance dispersal hamper drives intended for limited
geographic spread, while spatially restricted dispersal slows progression of low-threshold
drives intended for unrestricted spread. Models exploring spatial reproductive processes
(e.g., premating dispersal) found those traits have a strong influence on drive speed and spread
[44,62,63]. The interplay between life history, dispersal, and evolutionary trajectory varies among
populations and has been difficult to predict. However, GDDMs provide a platform to explore how

Trends in Genetics

616 Trends in Genetics, August 2023, Vol. 39, No. 8

CellPress logo


spatial processes influence gene drive outcomes to inform RAs, underscoring the importance of
gathering relevant natural history datasets to develop well-informed prior distributions
(e.g., dispersal kernels, population genetic structure) for target populations.

‘Principle 4: landscape structure and climatic variation are key determinants of drive success and
spread’. These environmental features alter local carrying capacity and migration dynamics
across space and time [20]. For mosquito systems, seasonality creates major shifts in drive dy-
namics; studies incorporating these effects help optimize release strategies [38]. RAs for gene
drive field trials or staged releases will benefit greatly from case-specific models in which land-
scape and climate effects are evaluated (e.g., how habitat distribution or seasonality impact dis-
ease transmission outcomes), which are likely difficult to simulate in laboratory studies and may
not be easily generalizable.

‘Principle 5: releasing GDMOs frommore sites, over larger areas, and across multiple time points
increases effectiveness’. These strategies tend to lower required release thresholds especially for
underdominance systems [29] or when fitness costs limit the efficacy of single releases [46]. Con-
versely, demographic release strategy modeling has uncovered few generalizable trends. In-
stead, outcomes depend largely on drive mechanism and target life-history characteristics. For
example, for conventional killer-rescue mosquito systems, releasing both sexes is most effective
[64], but for killer-male rescue-female mosquito systems, an all-male release is necessary [65]. Ul-
timately, RAs must balance modeling recommendations against the uncertainty posed by prac-
tical realities of GDMO introduction, such as whether mosquito sexing accuracy limits capacity to
ensure all-male releases.

Integrating dynamic models into RA
As gene drive products seek to transition from laboratory development to field trials (i.e., Phase 1
to Phase 2), decision-makers will rely on RAs [66–68]. Several modeling approaches commonly
contribute to RAs, each with strengths and weaknesses. Qualitative models are valuable for com-
municating generalizable concepts and system-level understanding (e.g., directional relation-
ships among model features) and can be developed quickly. However, these models fail to
provide precise estimates required by some RAs, such as specific threshold values for features
mediating drive success. Statistical models are commonly used for RAs. They quantify outcomes
of interest using empirical data to explain system features. However, their ability to generalize out-
comes across unsampled systems or identify emergent system-level behavior is limited. Also,
prior to field trials, it may be impossible to collect empirical data on important gene drive
dynamics such as interspecific interactions, response to variable climate and landscape
heterogeneity, or dispersal, though naturally occurring drives provide safe and useful experimen-
tal systems [69].

Dynamic processmodels (e.g., GDDMs) provide quantitative outputs that reflect system-level be-
havior by predicting how ecological and evolutionary processes interact to produce population
and ecosystem-level changes, making them well-suited to model causal pathways and inform
gene drive RAs. Yet, their precision and applicability depend on the accuracy with which the
model structure and parameterization represents the gene drive system. GDDMs can quantify
key outcomes such as likelihood of complete population eradication/replacement [43,70] and
expected spread over space and time [20,28] (i.e., invasion dynamics), impacts on nontarget
populations and ecological communities [71,72], and the influence of eco-evolutionary feedback,
such as how fitness effects influence spatial spread or how shifting population size influences
remediation drive efficacy [25,73]. They can reveal how technical considerations like genetic con-
version mechanisms or release strategies modify risk probabilities [74,75]. Risk assessors can
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use predicted outcomes from properly evaluated GDDMs to inform analyses of environmental,
socioeconomic, and epidemiological risks without introducing GDMOs into the environment.

RAs begin by identifying hazards and their adverse outcomes, often using the problem formula-
tion approach [76,77]. While checklist approaches are commonly used to determine whether
known hazards apply to new systems, they may neglect novel hazards [78]. By modeling under-
lying biological processes, GDDMs can reveal novel hazards as emergent properties of complex
systems that are otherwise difficult to predict. For example, [41] highlights chasing dynamics that
result when wild-type individuals recolonize areas previously eradicated by gene drives, increas-
ing the potential for resistant allele evolution and reducing likelihood of complete population sup-
pression/replacement. While chasing is a generalizable hazard applicable across gene drive
systems, target-specific hazards have been revealed by incorporating species-level genetic
and demographic processes. For example, GDDMs illustrated how haplodiploidy and inbreeding
effects impede suppression of the honey bee parasite Varroa destructor [79].

Dynamic models provide additional utility by characterizing risk mitigation strategies. Regulatory
approval for gene drive products may require a locally restricted, reversible, and/or high-
threshold drives, given the risk of unintentional geographic spread and to nontarget populations
from low-threshold gene drives [59]. A growing suite of models explore the feasibility of threshold-
dependent and other gene drive mechanisms intended to reduce risks of uncontrolled spread
including locally fixed alleles [80,81], self-eliminating gene drives [82], reversible gene drives
[60,83], toxin-antidote drives (e.g., Medea systems) [48,84], and split-drive systems [52,85].
These studies provide risk assessors with comparative and proof-of-concept analyses for risk
mitigation under both idealized laboratory environments and variable conditions, as demo-
graphic, spatial, and environmental complexity is incorporated. Additionally, dynamic process
models can benefit post-release monitoring (i.e., Phase 4) by informing sampling efforts, and in
turn, monitoring data can be used to evaluate and improve model performance [17].

Complexity, uncertainty, and limitations of gene drive models
Despite their utility, GDDMs face several challenges including sources of model uncertainty and
tradeoffs surrounding model complexity, which might limit trust in model predictions. Model
structure can generate uncertainty when biological processes and their interactions are repre-
sented inaccurately or ignored, often through simplifying assumptions, which can obscure certain
outcomes and bias results. For example, biological inferences can change when models vary the
order of genetic or spatial processes to reflect biological complexity [44,54]. Processes are some-
times excluded or simplified due to poor data availability, particularly for genetic and life history
characteristics of target populations, species abundances across introduction environments,
and the probability of important events (e.g., variable DNA repair mechanisms, long-distance mi-
gration). Lack of relevant data across gene drive systems also contributes model uncertainty
through inaccurate parameterization, which can cause misleading results [86].

As modelers seek to reduce uncertainty, inherent tradeoffs occur as biological complexity is
encoded or ignored. Simpler models incorporating fewer biological processes exhibit reduced
variance but increased prediction bias, while predictions frommore complex models often exhibit
wider confidence intervals but are more likely to capture the truth. Simpler GDDMs can be more
flexibly applied to diverse systems, making them attractive for risk assessors, but may ignore im-
portant system-specific features. By tailoring GDDMs to unique characteristics of each drive sys-
tem and target population, model complexity enables more accurate biological inference and risk
analysis. However, each additional feature increases the difficulty of accurate model construction,
parameterization, and validation, creating opportunities for increased model uncertainty, where
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inaccurate representations can cascade across biological scales (e.g., genetic expression affects
fitness costs, affecting response to climate variation, and spatial spread). Indeed, a single model
that sufficiently encompasses all relevant genetic, demographic, spatial, ecological, and imple-
mentation features is difficult to construct and interpret, limiting practicality for risk assessment.
Balancing the complexity of GDDMs to optimize accuracy, uncertainty, and application utility
will be a persistent challenge as the field develops.

The inherent uncertainty and tradeoffs across GDDMs create challenges for their formal incorpo-
ration within RA frameworks. If RA practitioners do not understand the assumptions and limita-
tions of modeling approaches, nor participate in model development, their trust and investment
in GDDM applications may wane. These issues highlight the lack of guidelines for model develop-
ment or levels of model uncertainty and accepted protocols for model evaluation within RA frame-
works. Extant recommendations largely fail to describe which gene drive features should be
examined across research phases, or how system-specific attributes might influence modeling
approaches and applications [7,8].

Concluding remarks and future perspectives
Gene drive modeling benefits from an iterative and adaptive approach integrated within the
phased research pathway (Figure 5). As gene drive systems are designed, early models use sim-
pler representations incorporating genetic and demographic features relevant to drive efficacy
and relative fitness. Model evaluation provides rationale for further data collection to validate
and/or improve prior distributions of model parameters, enabling more confident incorporation
of increasingly complex and accurate biological processes as projects move through develop-
ment phases. Model outcomes and uncertainty can inform and improve RAwith each iterative im-
provement. The Target Malaria project exemplifies this process, wherein risk assessment priorities
help structure experimental research progression [87,88]. Using a nondrive transgenic sterile male
system, Yao et al. completed recent field trials in Burkina Faso, providing the first empirical data on
realized fitness costs for transgenic mosquitoes in nature [89], which were compatible with esti-
mates drawn from large cage experiments [90,91] and probabilistic risk predictions [92].

Over time, the average number of model features included in GDDMs has increased (see
Figure S1 in supplemental information online). However, it is important to recognize that building
more complex models may not translate to improved capacity for performing RAs, which often
evaluate specific endpoints concerning limited numbers of features or interactions. Simpler
models may be more appropriate if they adequately inform RA needs for particular applications.
By ignoring features less relevant to causal pathways being assessed, parsimonious models may
provide clearer predictions about features of interest. For example, assessment of geographical
containment for a field trial may ignore certain genetic processes, while analyses of construct
evolutionary stability may include multiple genetic processes but ignore effects of environmental
heterogeneity. An important avenue is developing consensus among geneticists, modelers, risk
assessors, and stakeholders on modeling priorities, model evaluation, and guidance for making
decisions given model uncertainty (Figure 5) (see Outstanding questions) [93]. Model-informed
RAs can also use ensemble modeling approaches, wherein multiple independent models are
synthesized to account for uncertainty within each model to identify more robust and generaliz-
able outcomes [21].

Modelers can help risk assessors embrace GDDMs by delivering tools that enable exploration of
biological features and their dynamic interactions across variable parameter spaces. For exam-
ple, a searchable database of modeling results could be included within a recently proposed
gene drive registry [94], helping standardize and contextualize outcomes based on drive goal,
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Outstanding questions
What degree of biological complexity is
required to sufficiently analyze
population outcomes and
environmental risks from gene drives,
and how does this vary across target
populations and species?

How can we improve our probability
estimates of rare events like nontarget
spread via hybridization?

How accurately can relative fitness of
transgenic individuals be predicted
before field trials? What approaches
to measuring fitness are most useful
for informing models and RA?

How do transgenic fitness costs vary
across variable environments?

How should modeling and risk
assessment expectations vary for
localized or nonlocalized, high-
threshold or low-threshold drives?

Can exploratory models testing
hypotheses about specific features be
easily applied to RA?

What model evaluation and validation
procedures should be implemented
to address uncertainty and
acceptability of model predictions for
relevant stakeholders and decision
makers at different research stages?
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technology, target species, eco-evolutionary features, and mathematical assumptions. Similarly,
modular simulation platforms like MGDrivE2 can be provided in user-friendly formats to improve
intuition about gene drive dynamics [38]. Such tools improve capacity for independent model re-
view if concerns exist about potential conflicts of interest when product developers also develop
models required for regulatory approval. These modeling tools have shown promise for RA appli-
cations in mosquitoes and mice [42,95]. Adapting such tools into GUI-based programs can fur-
ther improve approachability and collaboration by increasing accessibility to nontechnical
audiences, albeit with more limited modeling options and reduced emphasis on underlying
assumptions (e.g., DrMxR [96]). Risk assessors could be encouraged to check the rationale for
parameter values proposed in gene drive technology applications, and if necessary, explore the
effects of alternative parameter values to identify potential risks, parameters, and eco-
evolutionary contexts that may require further investigation before release. Making sense of com-
plex systems is a major benefit of dynamic modeling, given sufficient knowledge of their develop-
ment and interpretation. Facilitating risk assessors’ access to and investment in GDDMs will
benefit this nascent field, and ultimately, our potential to translate novel biotechnologies into
safe and effective solutions for pressing environmental issues.

TrendsTrends inin GeneticsGenetics

Figure 5. Iterative process of gene drive modeling and application to risk assessment. Dynamicmodels representing gene drive systems are developed early as
projects progress through the phased research pathway. Data from gene drive experiments and other data sources inform model processes and parameters. Model
predictions and associated uncertainties inform risk assessments and inform needs for additional data, which can be used to evaluate models and further refine data
requirements. New data sources can iteratively update models and risk assessments as the process continues.
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