Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Quantitative Trait Loci Associated with Protein, Oil and Carbohydrates in Soybean [Glycine max (L.) Merr.] Seeds

Ravi V Mural, University of Nebraska - Lincoln


Soybean is mainly cultivated for its oil and high quality protein meal for feed, fuel and food uses. Achieving an improved balance of protein and oil in the seed, along with yield will enhance crop value. In practice, this has been difficult to achieve due to significant negative correlations of oil and protein, and the mostly negative relationship reported between seed protein concentration and yield. Most previous studies have focused on increasing seed oil concentration (SOC) or seed protein concentration (SPC) individually, and a few focused on decreasing raffinosacharides to improve digestibility and metabolizable energy of the feed for monogastric animals. None of the studies to date have considered improving the balance of SOC and SPC by also considering variation in total soluble sugars, which comprise the third largest component in soybean seed. Three related bi-parental recombinant inbred line (RIL) populations were developed by crossing two plant introduction lines that have lower total sugar concentration with two high-yielding soybean lines having higher SOC resulting in two pairs of half-sib populations. The objectives of this study were to identify genomic regions that influence oil, protein and carbohydrate concentrations in the seed in three uniquely structured bi-parental RIL populations using Molecular Inversion Probes (MIPs) markers, and evaluate relationships among seed composition traits and seed yield, seed weight and plant maturity from multiple environments. In total, 51 QTLs for seed, seed composition and plant traits were mapped on 17 chromosomes. All populations showed transgressive segregation for the sum of seed oil+protein concentration (SUM) in both directions but showed little transgressive segregation for SOC or SPC in two populations. There was a positive correlation of SOC and SPC with the SUM in two populations and a near to zero relationship of SUM with plot yield. Over the three populations, about 85% of the lines met processor targets of 10-12 pounds of oil per bushel and would produce 48% protein meal. The selected lines from this study could be further evaluated for yield and desirable agronomic traits in multi-location trials, which could lead to higher yielding soybean lines with improved seed composition. This work will ultimately lead to higher profitability for both the processors and farmers.

Subject Area

Agronomy|Plant sciences

Recommended Citation

Mural, Ravi V, "Quantitative Trait Loci Associated with Protein, Oil and Carbohydrates in Soybean [Glycine max (L.) Merr.] Seeds" (2019). ETD collection for University of Nebraska-Lincoln. AAI27667305.