Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Energy-Efficient, Environment-Aware Synchronization and Connectivity for the Internet of Things

Baofeng Zhou, University of Nebraska - Lincoln

Abstract

With the recent proliferation of the Internet of Things (IoT) in many applications, the importance of providing reliable wireless connectivity and network coordination receives increasing attention. A growing number of IoT devices are deployed in diverse physical environments for distinct needs, causing the performance of wireless networking techniques subject to environmental factors and energy conservation considerations. Moreover, many existing solutions are developed under the assumption that the network and the environment are homogeneous, which underscore the need for energy-efficient and environment-aware wireless networking solutions for heterogeneous IoT. In this dissertation, two wireless networking problems are studied: (1) Energy-efficient and environment-aware network synchronization for heterogeneous IoT. Synchronization is a fundamental building block of wireless networks. The research in this dissertation aims to provide holistic approaches to address the energy efficiency issue and the impact of environmental factors on the performance of synchronization mechanisms. First, a timestamp-free syntonization mechanism is developed to mitigate the impact of communication delays in the network. Also, a correlation-based network synchronization protocol that leverages temperature information to synchronize correlated clusters is designed. A scheduling framework is developed to optimize the overhead of network synchronization. In addition, the concept of network time connectivity is introduced as a network-level synchronization performance metric. (2) Long-range, environment-aware wireless underground communication techniques. Internet of Underground Things is an enabling technology for applications such as precision agriculture and underground infrastructure monitoring. Underground communication performance is affected by environmental factors, i.e., soil properties, including soil moisture, soil type, and soil bulk density. A long-range communication technique is evaluated in an underground communication testbed to study the impact of soil parameters on the performance of the technique.

Subject Area

Computer Engineering|Computer science|Environmental management|Electrical engineering

Recommended Citation

Zhou, Baofeng, "Energy-Efficient, Environment-Aware Synchronization and Connectivity for the Internet of Things" (2021). ETD collection for University of Nebraska-Lincoln. AAI28489782.
https://digitalcommons.unl.edu/dissertations/AAI28489782

Share

COinS