Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Rational Device Design for Highly Efficient Organic Photovoltaic Solar Cells

Bin Yang, University of Nebraska - Lincoln


Abundant, scalable, environmentally-friendly organic photovoltaic (OPV) technology is increasingly promising in recent years. The power conversion efficiency (PCE) of OPVs has been raised to around 10%. However, this record efficiency is still far below the Shockley-Quasar limit of 22~27%. This dissertation introduces great research effort to improve the OPV device efficiency by understanding the device physics, and engineering the donor/acceptor interfaces as well as designing new device architectures. The research activities mainly focused on: 1) Understanding the physical mechanism of open circuit voltage in OPVs; 2) Optimizing the band offset between the donor and the acceptor by using ultrathin ferroelectric dipole layer between donor/acceptor interfaces; 3) Designing fullerene based Schottky-barrier junction structure to obtain large open circuit voltage of round 0.9 V; 4) Applying thermally-annealed bilayer heterojunction structure to improve OPV device performance and demonstrating the origin of the improvement is due to reduced bimolecular charge recombination loss; 5) Studying the ferromagnetism of model photovoltaic materials poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), which might open up another approach to improve P3HT:PCBM based organic solar cells by using external magnetic fields, and also might initiate the applications of multifunctional organic optoelectronics with integration of electronics, photonics, and magnetics.

Subject Area

Condensed matter physics|Materials science

Recommended Citation

Yang, Bin, "Rational Device Design for Highly Efficient Organic Photovoltaic Solar Cells" (2013). ETD collection for University of Nebraska - Lincoln. AAI3603842.