Earth and Atmospheric Sciences, Department of

 

Date of this Version

2018

Comments

© 2018 American Meteorological Society.

DOI: 10.1175/JCLI-D-17-0515.1

Abstract

The North American Dust Bowl drought during the 1930s had devastating environmental and societal impacts. Comprehending the causes of the drought has been an ongoing effort in order to better predict similar droughts and mitigate their impacts. Among the potential causes of the drought are sea surface temperature (SST) anomalies in the tropical Pacific Ocean and strengthened local sinking motion as a feedback to degradation of the land surface condition leading up to and during the drought. Limitations on these causes are the lack of a strong tropical SST anomaly during the drought and lack of local anomaly in moisture supply to undercut the precipitation in the U.S. Great Plains. This study uses high-resolution modeling experiments and quantifies an effect of the particular Great Plains land cover in the 1930s that weakens the southerly moisture flux to the region. This effect lowers the average precipitation, making the Great Plains more susceptible to drought. When drought occurs, the land-cover effect enhances its intensity and prolongs its duration. Results also show that this land-cover effect is comparable in magnitude to the effect of the 1930s large-scale circulation anomaly. Finally, analysis of the relationship of these two effects suggests that while lowering the precipitation must have contributed to the Dust Bowl drought via the 1930s land-cover effect, the initiation of and recovery from that drought would likely result from large-scale circulation changes, either of chaotic origin or resulting from combinations of weak SST anomalies and other forcing.

Share

COinS