U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska



Brittney N. Keel http://orcid.org/0000-0002-8099-0870

Date of this Version


Document Type



Keel et al. BMC Genomic Data (2021) 22:25



Open Access This article is licensed under a Creative Commons Attribution 4.0 International License


Background: Porcine milk is a complex fluid, containing a myriad of immunological, biochemical, and cellular components, made to satisfy the nutritional requirements of the neonate. Whole milk contains many different cell types, including mammary epithelial cells, neutrophils, macrophages, and lymphocytes, as well nanoparticles, such as milk exosomes. To-date, only a limited number of livestock transcriptomic studies have reported sequencing of milk. Moreover, those studies focused only on sequencing somatic cells as a proxy for the mammary gland with the goal of investigating differences in the lactation process. Recent studies have indicated that RNA originating from multiple cell types present in milk can withstand harsh environments, such as the digestive system, and transmit regulatory molecules from maternal to neonate. Transcriptomic profiling of porcine whole milk, which is reflective of the combined cell populations, could help elucidate these mechanisms. To this end, total RNA from colostrum and mature milk samples were sequenced from 65 sows at differing parities. A stringent bioinformatic pipeline was used to identify and characterize 70,841 transcripts. Results: The 70,841 identified transcripts included 42,733 previously annotated transcripts and 28,108 novel transcripts. Differential gene expression analysis was conducted using a generalized linear model coupled with the Lancaster method for P-value aggregation across transcripts. In total, 1667 differentially expressed genes (DEG) were identified for the milk type main effect, and 33 DEG were identified for the milk type x parity interaction. Several gene ontology (GO) terms related to immune response were significant for the milk type main effect, supporting the well-known fact that immunoglobulins and immune cells are transferred to the neonate via colostrum. Conclusions: This is the first study to perform global transcriptome analysis from whole milk samples in sows from different parities. Our results provide important information and insight into synthesis of milk proteins and innate immunity and potential targets for future improvement of swine lactation and piglet development.