Industrial and Management Systems Engineering


Date of this Version



International Journal of Industrial Ergonomics 16 (1995) 165-174


U.S. Government Work


Human strength and capabilities such as dexterity, manipulability, and tactile perception are unique and render the hand as a very versatile, effective, multipurpose tool. This is especially true for unknown microgravity environments such as the EVA environment. Facilitation of these activities, with simultaneous protection from the cruel EVA environment, are the two, often conflicting, objectives of glove design. The objective of this study was to assess the effects of EVA gloves at different pressures on human hand capabilities. A factorial experiment was performed in which three types of EVA gloves were tested at five pressure differentials. The independent variables tested in this experiment were gender, glove type, pressure differential, and glove make. Six subjects participated in an experiment in which a number of dexterity measures such as time to tie a rope, and the time to assemble a nut and bolt, were recorded. Tactility was measured through a two-point discrimination test. The results indicate that (a) With EVA gloves there is a considerable reduction in both strength and dexterity performance; and (b) performance decrements increase with increasing pressure differential. Some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand. The implications for the designer are discussed.