Libraries at University of Nebraska-Lincoln

 

Date of this Version

1-18-2021

Abstract

Healthcare benefits related to continuous monitoring of human movement and physical activity can potentially reduce the risk of accidents associated with elderly living alone at home. Based on the literature review, it is found that many studies focus on human activity recognition and are still active towards achieving practical solutions to support the elderly care system. The proposed system has introduced a joint approach of machine learning and signal processing technology for the recognition of human's physical movements using signal data generated by accelerometer sensors. The framework adopts the concept of DSP to select very descriptive feature sets and uses ML-based supervised learning techniques for effective classification. The simulation result demonstrates the efficiency of the proposed system regarding the prediction of human movement based on sensor signals.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.