Is it true that we solve problem using techniques in form of formula? Mathematical formulas can be derived through thinking of a problem or situation. Research has shown that we can create formulas by applying theoretical, technical, and applied knowledge. The knowledge derives from brainstorming and actual experience can be represented by formulas. It is intended that this research article is geared by an audience of average knowledge level of solving mathematics and scientific intricacies. This work details an introductory level of simple, at times complex problems in a mathematical epidermis and computability and solvability in a Computer Science. Research has shown that there are various ways of creating formulas and solving simple, at times complex problems. Explored. scenarios are introduced and answers are provided in this paper. Thorough ways of getting familiar with logic behind each situation of a critical problem solving has enable us to formulate techniques of creating mathematical formulas. This work also explained how the formulas presented can be solved to attain result. We must justify solving problems with the creation of scientific formula in technology. ]]>

We are motivated to explore this sequence duality since it arises naturally in at least two important algebraic-geometric contexts. The first context is Macaulay- Matlis duality, where the sequence of initial degrees of the family of symbolic powers of a radical ideal is dual to the sequence of Castelnuovo-Mumford regularity values of a quotient by ideals generated by powers of linear forms. This philosophy is drawn from an influential paper of Emsalem and Iarrobino. We generalize this duality to differentially closed graded filtrations of ideals.

In a different direction, we establish a duality between the sequence of Castelnuovo- Mumford regularity values of the symbolic powers of certain ideals and a geometrically inspired sequence we term the jet separation sequence. We show that this duality underpins the reciprocity between two important geometric invariants: the multipoint Seshadri constant and the asymptotic regularity of a set of points in projective space.

]]>Our results build upon those obtained by Becklin and Rammaha [8]. With some re- strictions on the parameters in the system and with careful analysis involving the Nehari manifold we obtain global existence of potential well solutions and establish either exponential or algebraic decay rates of energy, dependent upon the behavior of the damping terms. The main novelty in this work lies in our stabilization estimate, which notably does not generate lower-order terms. Consequently, the proof of the main result is shorter and more concise.

]]>