National Aeronautics and Space Administration


Date of this Version



Aerosol Science and Technology, 45:1319–1325, 2011


U.S. Government Work


The optical properties of soot particles in plumes emanating from a high bypass turbofan aircraft engine (V2527) were measured at distances of 40–80 m behind the engine with a cavityenhanced phase shift (CAPS)-based extinction monitor (known as theCAPSPMex) and a multi-angle absorption photometer, both operating at wavelength ~630 nm. Integrated plume measurements from the two instruments were highly correlated with each other (r2 > 0.99, N = 12) and with measured carbon dioxide emission concentrations. Ancillary measurements indicated that the soot particle volume-weighted mobility diameter distribution peaked at 60nmwith a full width at half maximum of ~60 nm. The soot single scattering albedo determined using the absorption and extinction measurements under engine idle conditions was 0.05 ± 0.02 (where the uncertainty represents 2σ precision), in agreement with previous measurements of aircraft exhaust. The engine soot emission index (mass soot per mass fuel burned) for this particular engine, derived from these measurements and a wavelength-specific mass absorption coefficient and the measured in-plume carbon dioxide concentrations, was 225 ± 35 mg kg−1 at engine idle conditions. These results plus more limited data collected from in-use aircraft on the runway indicate that the CAPS extinction monitor can provide (with an appropriate albedo correction) a credible measurement of the engine soot emission index in situations where the time response and sensitivity of particle absorption monitors are not otherwise sufficient.