Department of Physics and Astronomy: Publications and Other Research

 

Date of this Version

2016

Citation

AIP ADVANCES 6, 056218 (2016)

http://dx.doi.org/10.1063/1.4944403

Comments

Copyright 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Abstract

Mn2CrGa in the disordered cubic structure has been synthesized using rapid quenching and subsequent annealing. The cubic phase transforms to a stable tetragonal phase when a fraction of Cr or Ga is replaced by Pt or Al, respectively. All samples are ferrimagnetic with high Curie temperatures (Tc); Mn2CrGa exhibits the highest Tc of about 813 K. The tetragonal samples have appreciable values of magnetocrystalline anisotropy energy, which leads to an increase in coercivity (Hc) that approaches about 10 kOe in the Pt-doped sample. The Hc linearly increases with a decrease of temperature, concomitant with the anisotropy change with temperature. All samples are metallic and show negative magnetoresistance with room-temperature resistivities on the order of 1 mΩcm. The magnetic properties including high Tc and low magnetic moment suggest that these tetragonal materials have potential for spin-transfertorque- based devices.

Share

COinS