Plant Science Innovation, Center for


Document Type


Date of this Version



Published in PNAS (2002) 99(19), 12489-12494; Copyright 2002 by the National Academy of Sciences of the USA. Used by Permission


GTP cyclohydrolase I (GCHI) mediates the first and committing step of the pterin branch of the folate-synthesis pathway. In microorganisms and mammals, GCHI is a homodecamer of ≈26-kDa subunits. Genomic approaches identified tomato and Arabidopsis cDNAs specifying ≈50-kDa proteins containing two GCHI-like domains in tandem and indicated that such bimodular proteins occur in other plants. Neither domain of these proteins has a full set of the residues involved in substrate binding and catalysis in other GCHIs. The tomato and Arabidopsis cDNAs nevertheless encode functional enzymes, as shown by complementation of a yeast fol2 mutant and by assaying GCHI activity in extracts of complemented yeast cells. Neither domain expressed separately had GCHI activity. Recombinant tomato GCHI formed dihydroneopterin triphosphate as reaction product, as do other GCHIs, but unlike these enzymes it did not show cooperative behavior and was inhibited by its substrate. Denaturing gel electrophoresis verified that the bimodular GCHI polypeptide is not cleaved in vivo into its component domains, and size-exclusion chromatography indicated that the active enzyme is a dimer. The deduced tomato and Arabidopsis GCHI polypeptides lack overt targeting sequences and thus are presumably cytosolic, in contrast to other plant folate-synthesis enzymes, which are mitochondrial proteins with typical signal peptides. GCHI mRNA and protein are strongly in expressed unripe tomato fruits, implying that fruit folate is made in situ rather than imported. As ripening advances, GCHI expression declines sharply, and folate content drops, suggesting that folate synthesis fails to keep pace with turnover.