Statistics, Department of

 

The R Journal

Date of this Version

6-2017

Document Type

Article

Citation

The R Journal (June 2017) 9(1); Editor: Roger Bivand

Comments

Copyright 2017, The R Foundation. Open access material. License: CC BY 4.0 International

Abstract

Dynamically typed programming languages like R allow programmers to write generic, flexible and concise code and to interact with the language using an interactive Readeval-print-loop (REPL). However, this flexibility has its price: As the R interpreter has no information about the expected variable type, many base functions automatically convert the input instead of raising an exception. Unfortunately, this frequently leads to runtime errors deeper down the call stack which obfuscates the original problem and renders debugging challenging. Even worse, unwanted conversions can remain undetected and skew or invalidate the results of a statistical analysis. As a resort, assertions can be employed to detect unexpected input during runtime and to signal understandable and traceable errors. The package checkmate provides a plethora of functions to check the type and related properties of the most frequently used R objects and variable types. The package is mostly written in C to avoid any unnecessary performance overhead. Thus, the programmer can conveniently write concise, well-tested assertions which outperforms custom R code for many applications. Furthermore, checkmate simplifies writing unit tests using the framework testthat (Wickham, 2011) by extending it with plenty of additional expectation functions, and registered C routines are available for package developers to perform assertions on arbitrary SEXPs (internal data structure for R objects implemented as struct in C) in compiled code.

Share

COinS