Statistics, Department of

The R Journal
Date of this Version
6-2017
Document Type
Article
Citation
The R Journal (June 2017) 9(1); Editor: Roger Bivand
Abstract
In Data Mining, the value of extracted knowledge is directly related to the quality of the used data. This makes data preprocessing one of the most important steps in the knowledge discovery process. A common problem affecting data quality is the presence of noise. A training set with label noise can reduce the predictive performance of classification learning techniques and increase the overfitting of classification models. In this work we present the NoiseFiltersR package. It contains the first extensive R implementation of classical and state-of-the-art label noise filters, which are the most common techniques for preprocessing label noise. The algorithms used for the implementation of the label noise filters are appropriately documented and referenced. They can be called in a R-user-friendly manner, and their results are unified by means of the "filter" class, which also benefits from adapted print and summary methods.
Included in
Numerical Analysis and Scientific Computing Commons, Programming Languages and Compilers Commons
Comments
Copyright 2017, The R Foundation. Open access material. License: CC BY 4.0 International