Statistics, Department of

 

The R Journal

Date of this Version

12-2015

Document Type

Article

Citation

The R Journal (December 2015) 7(2); Editor: Bettina Grün

Comments

Copyright 2015, The R Foundation. Open access material. License: CC BY 3.0 Unported

Abstract

Most classification algorithms deal with datasets which have a set of input features, the variables to be used as predictors, and only one output class, the variable to be predicted. However, in late years many scenarios in which the classifier has to work with several outputs have come to life. Automatic labeling of text documents, image annotation or protein classification are among them. Multilabel datasets are the product of these new needs, and they have many specific traits. The mldr package allows the user to load datasets of this kind, obtain their characteristics, produce specialized plots, and manipulate them. The goal is to provide the exploratory tools needed to analyze multilabel datasets, as well as the transformation and manipulation functions that will make possible to apply binary and multiclass classification models to this data or the development of new multilabel classifiers. Thanks to its integrated user interface, the exploratory functions will be available even to non-specialized R users.

Share

COinS