Statistics, Department of

The R Journal
Date of this Version
7-2018
Document Type
Article
Citation
The R Journal (July 2018) 10(1); Editor: John Verzani
Abstract
Species Distribution Models (SDMs) constitute an important tool to assist decision-making in environmental conservation and planning in the context of climate change. Nevertheless, SDM projections are affected by a wide range of uncertainty factors (related to training data, climate projections and SDM techniques), which limit their potential value and credibility. The new package mopa provides tools for designing comprehensive multi-factor SDM ensemble experiments, combining multiple sources of uncertainty (e.g. baseline climate, pseudo-absence realizations, SDM techniques, future projections) and allowing to assess their contribution to the overall spread of the ensemble projection. In addition, mopa is seamlessly integrated with the climate4R bundle and allows straightforward retrieval and post-processing of state-of-the-art climate datasets (including observations and climate change projections), thus facilitating the proper analysis of key uncertainty factors related to climate data.
Included in
Numerical Analysis and Scientific Computing Commons, Programming Languages and Compilers Commons
Comments
Copyright 2018, The R Foundation. Open access material. License: CC BY 4.0 International