Statistics, Department of

 

The R Journal

Date of this Version

7-2018

Document Type

Article

Citation

The R Journal (July 2018) 10(1); Editor: John Verzani

Comments

Copyright 2018, The R Foundation. Open access material. License: CC BY 4.0 International

Abstract

Efficiently producing transparent analyses may be difficult for beginners or tedious for the experienced. This implies a need for computing systems and environments that can efficiently satisfy reproducibility and accountability standards. To this end, we have developed a system, R package, and R Shiny application called adapr (Accountable Data Analysis Process in R) that is built on the principle of accountable units. An accountable unit is a data file (statistic, table or graphic) that can be associated with a provenance, meaning how it was created, when it was created and who created it, and this is similar to the ’verifiable computational results’ (VCR) concept proposed by Gavish and Donoho. Both accountable units and VCRs are version controlled, sharable, and can be incorporated into a collaborative project. However, accountable units use file hashes and do not involve watermarking or public repositories like VCRs. Reproducing collaborative work may be highly complex, requiring repeating computations on multiple systems from multiple authors; however, determining the provenance of each unit is simpler, requiring only a search using file hashes and version control systems.

Share

COinS