U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska


Document Type


Date of this Version



Ecology Letters (2016) 19: 956–966


U.S. Government Work


It is unclear how elevated CO2 (eCO2) and the corresponding shifts in temperature and precipitation will interact to impact ecosystems over time. During a 7-year experiment in a semi-arid grassland, the response of plant biomass to eCO2 and warming was largely regulated by interannual precipitation, while the response of plant community composition was more sensitive to experiment duration. The combined effects of eCO2 and warming on aboveground plant biomass were less positive in ‘wet’ growing seasons, but total plant biomass was consistently stimulated by ~ 25% due to unique, supra-additive responses of roots. Independent of precipitation, the combined effects of eCO2 and warming on C3 graminoids became increasingly positive and supraadditive over time, reversing an initial shift toward C4 grasses. Soil resources also responded dynamically and non-additively to eCO2 and warming, shaping the plant responses. Our results suggest grasslands are poised for drastic changes in function and highlight the need for long-term, factorial experiments.