U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska


Document Type


Date of this Version



Published in J Ind Microbiol Biotechnol (2008) 35:343–354.


This review focuses on the potential advantages and disadvantages of forages such as switchgrass (Panicum virgatum), and two small grains: sorghum (Sorghum bicolor), and wheat (Triticum aesitvum), as feedstocks for biofuels. It highlights the synergy provided by applying what is known from forage digestibility and wheat and sorghum starch properties studies to the biofuels sector. Opportunities therefore, exist to improve biofuel qualities in these crops via genetics and agronomics. In contrast to cereal crops, switchgrass still retains tremendous exploitable genetic diversity, and can be specifically improved to Wt a particular agronomic, management, and conversion platform. Combined with emerging studies on switchgrass genomics, conversion properties and management, the future for genetic modification of this species through conventional and molecular breeding strategies appear to be bright. The presence of brown-midrib mutations in sorghum that alter cell wall composition by reducing lignin and other attributes indicate that sorghum could serve as an important model species for C4- grasses. Utilization of the brown-midrib traits could lead to the development of forage and sweet sorghums as novel biomass crops. Additionally, wheat crop residue, and wheat and sorghum with improved starch content and composition represent alternate biofuel sources. However, the use of wheat starch as a biofuel is unlikely but its value as a model to study starch properties on biofuel yields holds significant promise.