U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

 

Date of this Version

12-15-2008

Citation

2009 Published by Elsevier B.V.

Comments

R.N. Araujo et al. / Veterinary Parasitology 162 (2009) 106–115

Abstract

In the present study, we use microarray technology to investigate the expression patterns of 381 genes with known association to host immune responses. Hybridization targets were derived from previously characterized bovine cDNAs. A total of 576 reporters (473 sequence-validated cDNAs and 77 controls) were spotted onto glass slides in two sets of four replicates. Two color, comparative hybridizations across both mesenteric lymph node (MLN) and small intestine mucosa (SIM) RNA samples were done between animals with previously demonstrated phenotypic differences based on natural exposure to gastro- intestinal (GI) nematodes over a 6-month exposure period. A total of 138 significant hybridization differences were detected by mixed model analysis of variance. A subset of these significant differences was validated by quantitative, real-time RT-PCR to assay transcript levels for 18 genes. These results confirmed that in the SIM, susceptible animals showed significantly higher levels in the genes encoding IGHG1, CD3E, ACTB, IRF1, CCL5 and C3, while in the MLN of resistant animals, higher levels of expression were confirmed for PTPRC, CD1D and ITGA4. Combined, the results indicate that immune responses against GI nematode infections involve multiple response pathways. Higher levels of expression for IgE receptor, integrins, complement, monocyte/macrophage and tissue factors are related to resistance. In contrast, higher levels of expression for immunoglobulin chains and TCRs are related to susceptibility. Identification of these genes provides a framework to better understand the genetic variation underlying parasite resistance.

Share

COinS