U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska


Document Type


Date of this Version



Published in J Anim Sci 2005. 83:722-731. Copyright 2005. Used by permission.


Emissions of ammonia, as well as other gases and particulates, to the atmosphere are a growing concern of livestock producers, the general public, and regulators. The concentration and ruminal degradability of CP in beef cattle diets may affect urinary and fecal excretion of N and thus may affect ammonia emissions from beef cattle feed yards. To determine the effects of dietary CP concentration and degradability on potential ammonia emissions, 54 steers were randomly assigned to nine dietary treatments in a 3 × 3 factorial arrangement of treatments. Treatments consisted of three dietary CP concentrations (11.5, 13, and 14.5%) and three supplemental urea:cottonseed meal ratios (100:0, 50:50, and 0:100 of supplemental N). Steers were confined to tie stalls, and feces and urine excreted were collected and frozen after approximately 30, 75, and 120 d on feed. One percent of daily urine and feces excretion were added to polyethylene chambers containing 1,550 g of soil. Chambers were sealed, and ammonia emissions were trapped in an acid solution for 7 d using a vacuum system. As the protein concentration in the diet increased from 11.5 to 13%, in vitro daily ammonia emissions increased (P < 0.01) 60 to 200%, due primarily to increased urinary N excretion. As days on feed increased, in vitro ammonia emissions also increased (P < 0.01). Potential ammonia losses were highly correlated (P < 0.01) to urinary N (r2 = 0.69), urinary urea-N (r2 = 0.58) excretion, serum urea-N concentration (r2 = 0.52), and intake of degradable protein N (r2 = 0.23). Although dietary composition can affect daily ammonia losses, daily ammonia emissions must be balanced with effects on animal performance to determine optimal protein concentrations and forms in the diet.