US Geological Survey


Date of this Version



Published in Environ. Sci. Technol. 1998, 32, 558-566.


The first phase of intensive data collection for the National Water-Quality Assessment (NAWQA) was completed during 1993-1995 in 20 major hydrologic basins of the United States. Groundwater land-use studies, designed to sample recently recharged groundwater (generally within 10 years) beneath specific land-use and hydrogeologic settings, are a major component of the groundwater quality assessment for NAWQA. Pesticide results from the 41 land use studies conducted during 1993-1995 indicate that pesticides were commonly detected in shallow groundwater, having been found at 54.4% of the 1034 sites sampled in agricultural and urban settings across the United States. Pesticide concentrations were generally low, with over 95% of the detections at concentrations less than 1 μg/L. Of the 46 pesticide compounds examined, 39 were detected. The compounds detected most frequently were atrazine (38.2%), deethylatrazine (34.2%), simazine (18.0%), metolachlor (14.6%), and prometon (13.9%). Statistically significant relations were observed between frequencies of detection and the use, mobility, and persistence of these compounds. Pesticides were commonly detected in both agricultural (56.4%; 813 sites) and urban (46.6%; 221 sites) settings. Frequent detections of pesticides in urban areas indicate that, as is the case with agricultural pesticide use in agricultural areas, urban and suburban pesticide use significantly contribute to pesticide occurrence in shallow groundwater. Although pesticides were detected in groundwater sampled in urban areas and all nine of the agricultural land-use categories examined, significant variations in occurrence were observed among these categories. Maximum contaminant levels (MCLs) established by the U.S. Environmental Protection Agency for drinking water were exceeded for only one pesticide (atrazine, 3 μg/L) at a single location. However, MCLs have been established for only 25 of the 46 pesticide compounds examined, do not cover pesticide degradates, and, at present, do not take into account additive or synergistic effects of combinations of pesticide compounds or potential effects on nearby aquatic ecosystems.