Agronomy and Horticulture Department

 

Date of this Version

7-19-2016

Citation

Journal of Experimental Botany (2017) 68(2): 127–135. DOI: 10.1093/jxb/erw256.

Comments

Copyright 2016, the authors. Open access, Creative Commons Attribution license.

Abstract

C4 photosynthesis is perhaps one of the best examples of convergent adaptive evolution with over 25 independent origins in the grasses (Poaceae) alone. The availability of high quality grass genome sequences presents new opportunities to explore the mechanisms underlying this complex trait using evolutionary biology-based approaches. In this study, we performed genome-wide cross-species selection scans in C4 lineages to facilitate discovery of C4 genes. The study was enabled by the well conserved collinearity of grass genomes and the recently sequenced genome of a C3 panicoid grass, Dichanthelium oligosanthes. This method, in contrast to previous studies, does not rely on any a priori knowledge of the genes that contribute to biochemical or anatomical innovations associated with C4 photosynthesis. We identified a list of 88 candidate genes that include both known and potentially novel components of the C4 pathway. This set includes the carbon shuttle enzymes pyruvate, phosphate dikinase, phosphoenolpyruvate carboxylase and NADP malic enzyme as well as several predicted transporter proteins that likely play an essential role in promoting the flux of metabolites between the bundle sheath and mesophyll cells. Importantly, this approach demonstrates the application of fundamental molecular evolution principles to dissect the genetic basis of a complex photosynthetic adaptation in plants. Furthermore, we demonstrate how the output of the selection scans can be combined with expression data to provide additional power to prioritize candidate gene lists and suggest novel opportunities for pathway engineering.