Agronomy and Horticulture, Department of
ORCID IDs
Document Type
Article
Date of this Version
2017
Citation
Published in Pest Management Science (2017)
doi 10.1002/ps.4697
Abstract
Background: A population of Amaranthus tuberculatus (var. rudis) was confirmed resistant to 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor herbicides (mesotrione, tembotrione, and topramezone) in a seed corn/soybean rotation in Nebraska. Further investigation confirmed a non-target-site resistance mechanism in this population. The main objective of this study was to explore the role of cytochrome P450 inhibitors in restoring the efficacy of HPPD-inhibitor herbicides on the HPPD-inhibitor resistant A. tuberculatus population from Nebraska, USA (HPPD-R).
Background: A population of Amaranthus tuberculatus (var. rudis) was confirmed resistant to 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor herbicides (mesotrione, tembotrione, and topramezone) in a seed corn/soybean rotation in Nebraska. Further investigation confirmed a non-target-site resistance mechanism in this population. The main objective of this study was to explore the role of cytochrome P450 inhibitors in restoring the efficacy of HPPD-inhibitor herbicides on the HPPD-inhibitor resistant A. tuberculatus population from Nebraska, USA (HPPD-R).
Results: Enhanced metabolism via cytochrome P450 enzymes is the mechanism of resistance in HPPD-R. Amitrole partially restored the activity of mesotrione, whereas malathion, amitrole, and piperonyl butoxide restored the activity of tembotrione and topramezone in HPPD-R. Although corn was injured through malathion followed by mesotrione application a week after treatment, the injury was transient, and the crop recovered.
Includes supplementary file.
Included in
Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, Plant Biology Commons
Comments
Copyright © 2017 Society of Chemical Industry; published by John Wiley Inc. Used by permission.