Agronomy and Horticulture, Department of
Document Type
Article
Date of this Version
2018
Citation
New Phytologist (2018) 218: 594–603
Abstract
Crop yield is critical for human nutrition, yet the underlying machinery that ultimately determines yield potential is still not understood. Crop productivity under ideal conditions is determined by the efficiency with which plants intercept light, convert it into chemical energy, translocate photosynthates and convert these to storage products in harvestable organs (Zhu et al., 2010). In many crops, sucrose is the primary form for translocation inside the conduit (i.e. the phloem). A combination of SWEETmediated efflux from phloem parenchyma and subsequent secondary active sucrose import by SUT sucrose/H+ symporters is thought to create the driving force for pressure gradient-driven phloem transport and retrieval of sucrose leaking along the translocation path (Chen et al., 2015a).
Included in
Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, Plant Biology Commons
Comments
Copyright 2018 The Authors
This is an open access article
doi: 10.1111/nph.15021