Agronomy and Horticulture Department

 

Date of this Version

2015

Citation

Phenotypic Plasticity Response to Sowing Date, 2015

Abstract

Background Phenotypic plasticity of fitness-related traits is vital for plant species to adapt to variable environments. Chenopodium glaucum L. and Amaranthus retroflexus L. are two common weed species globally. Understanding the plasticity in life-history traits, especially in reproductive allocation, within and among these species is important for predicting their success and for managing them in different environments.

Methodology/Principal Findings Seeds of the two plant species were sown every 10 days from 26 Jun to 15 Aug. Life-history and fitness-related traits of both phenology and morphology were measured, and dry biomass of roots, stems, leaves, and reproductive tissues was determined at physiological maturity. Length of reproductive and total life period of the two species differed among six sowing-date treatments. Later germinating plants led to relatively reduced total life period, size, and earlier reproduction than earlier germinating plants. The ratio of reproductive biomass to total plant biomass increased with later planting dates in C. glaucum but declined in A. retroflexus. Mature plant height, crown diameter, and reproductive tissue biomass, and seed production of C. glaucum and A. retroflexus increased with delayed reproductive period. Both species displayed true plasticity in reproductive allocation. However, the sowing date had a far greater effect on rate of vegetative growth than on allocation to reproduction.

Conclusions/Significance The fitness of both C. glaucum and A. retroflexus populations have an apparent increase when the period between germination and seed production is much longer. However, C. glaucum appears better adapted to later sowing than A. retroflexus. Controlling seedlings prior to reproduction will alleviate the negative effect not only in the present year but also in future years.