Agronomy and Horticulture Department

 

Date of this Version

3-12-2015

Citation

Liu, Z., El-Basyoni, I., Kariyawasam, G., Zhang, G., Fritz, A., Hansen, J., Marais, F., Friskop, A., Chao, S., Akhunov, E., and Baenziger, P. S. 2015. Evaluation and associationmapping of resistance to tan spot and Stagonospora nodorum blotch in adaptedwinterwheat germplasm. PlantDis. 99:1333-1341.

Comments

U.S. government work.

Abstract

Tan spot and Stagonospora nodorum blotch (SNB), often occurring together, are two economically significant diseases of wheat in the Northern Great Plains of the United States. They are caused by the fungi Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, both of which produce multiple necrotrophic effectors (NE) to cause disease. In this work, 120 hard red winter wheat (HRWW) cultivars or elite lines, mostly from the United States, were evaluated in the greenhouse for their reactions to the two diseases as well as NE produced by the two pathogens. One P. nodorum isolate (Sn4) and four Pyrenophora tritici-repentis isolates (Pti2, 331-9, DW5, and AR CrossB10) were used separately in the disease evaluations. NE sensitivity evaluation included ToxA, Ptr ToxB, SnTox1, and SnTox3. The numbers of lines that were rated highly resistant to individual isolates ranged from 11 (9%) to 30 (25%) but only six lines (5%) were highly resistant to all isolates, indicating limited sources of resistance to both diseases in the U.S. adapted HRWW germplasm. Sensitivity to ToxA was identified in 83 (69%) of the lines and significantly correlated with disease caused by Sn4 and Pti2, whereas sensitivity to other NE was present at much lower frequency and had no significant association with disease. As expected, association mapping located ToxA and SnTox3 sensitivity to chromosome arm 5BL and 5BS, respectively. A total of 24 potential quantitative trait loci was identified with −log (P value) > 3.0 on 12 chromosomes, some of which are novel. This work provides valuable information and tools for HRWW production and breeding in the Northern Great Plains.