Papers in the Biological Sciences

 

Date of this Version

2012

Citation

Journal of Tropical Ecology (2012) 28:33–44.

Comments

Copyright 2011 Cambridge University Press

Abstract

Variation in understorey irradiance is both a cause and consequence of the structure and dynamics of closed-canopy forests, which are also influenced by soil nutrients and water availability. We tested the hypothesis that understorey light regimes differ among four mixed dipterocarp forest types that share the same rainfall, but grow on different soils along an edaphic gradient at one site in Borneo. Based on data from photosynthetically active radiation sensors deployed at 1-m height at 36 locations for 351 sensor-days, we found significant soil-related variation in irradiance. The more productive forest types on clay and fine loam had lower daily photosynthetic photon flux density (PPFD) than those on the more nutrient-depleted and better-drained sandy loam and loam. They also had fewer moderate to high-intensity sunflecks, and a greater proportion of their daily PPFD came from low-intensity light. Understorey irradiance did not, however, monotonically decline with increasing soil resources. Forests on intermediate soils had greater irradiance than those with more and less soil resources, due to steeper slopes. Plant communities arrayed on resource gradients are commonly used to test hypotheses of environmental factors driving their assembly. Our results indicate that consideration of multiple resource dimensions in such tests is critical.

Share

COinS