Papers in the Biological Sciences

 

Date of this Version

2010

Citation

Arch Biochem Biophys. 2010 March 1; 495(1): 35–41. doi:10.1016/j.abb.2009.12.017

Comments

© 2009 Elsevier Inc. All rights reserved.

Abstract

Holocarboxylase synthetase (HCS) catalyzes the binding of biotin to lysines in carboxylases and histones in two steps. First, HCS catalyzes the synthesis of biotinyl-5′-AMP; second, the biotinyl moiety is ligated to lysine residues. It has been proposed that step two is fairly promiscuous, and that protein biotinylation may occur in the absence of HCS as long as sufficient exogenous biotinyl-5′- AMP is provided. Here, we identified a novel polypeptide (Syn67) with a basic patch of lysines and arginines. Yeast-two-hybrid assays and limited proteolysis assays revealed that both N- and C-termini of HCS interact with Syn67. A potential target lysine in Syn67 was biotinylated by HCS only after arginine-to-glycine substitutions in Syn67 produced a histone-like peptide. We identified a Syn67 docking site near the active pocket of HCS by in silico modeling and site directed mutagenesis. Biotinylation of proteins by HCS is more specific than previously assumed.

Included in

Biology Commons

Share

COinS