Papers in the Biological Sciences

 

Date of this Version

2012

Citation

Journal of Bacteriology p. 6856–6863 December 2012 Volume 194 Number 24

Comments

Copyright © 2012, American Society for Microbiology. All Rights Reserved.

Abstract

Archaea such as Metallosphaera sedula are thermophilic lithoautotrophs that occupy unusually acidic and metal-rich environments. These traits are thought to underlie their industrial importance for bioleaching of base and precious metals. In this study, a genetic approach was taken to investigate the specific relationship between metal resistance and lithoautotrophy during biotransformation of the primary copper ore, chalcopyrite (CuFeS2). In this study, a genetic system was developed for M. sedula to investigate parameters that limit bioleaching of chalcopyrite. The functional role of the M. sedula copRTA operon was demonstrated by cross-species complementation of a copper-sensitive Sulfolobus solfataricus copR mutant. Inactivation of the gene encoding the M. sedula copper efflux protein, copA, using targeted recombination compromised metal resistance and eliminated chalcopyrite bioleaching. In contrast, a spontaneous M. sedula mutant (CuR1) with elevated metal resistance transformed chalcopyrite at an accelerated rate without affecting chemoheterotrophic growth. Proteomic analysis of CuR1 identified pleiotropic changes, including altered abundance of transport proteins having AAA-ATPase motifs. Addition of the insoluble carbonate mineral witherite (BaCO3) further stimulated chalcopyrite lithotrophy, indicating that carbon was a limiting factor. Since both mineral types were actively colonized, enhanced metal leaching may arise from the cooperative exchange of energy and carbon between surface-adhered populations. Genetic approaches provide a new means of improving the efficiency of metal bioleaching by enhancing the mechanistic understanding of thermophilic lithoautotrophy.

Included in

Biology Commons

Share

COinS