Papers in the Biological Sciences

 

Date of this Version

2006

Comments

Published in Genome Biology 2006, 7:R79 (doi:10.1186/gb-2006-7-8-r79). Copyright © 2006 McIntyre et al.; licensee BioMed Central Ltd. Used by permission.

Abstract

Background: Many genes produce multiple transcripts due to alternative splicing or utilization of alternative transcription initiation/termination sites. This 'transcriptome expansion' is thought to increase phenotypic complexity by allowing a single locus to produce several functionally distinct proteins. However, sex, genetic and developmental variation in the representation of alternative transcripts has never been examined systematically. Here, we describe a genome-wide analysis of sex-specific expression of alternative transcripts in Drosophila melanogaster.

Results: We compared transcript profiles in males and females from eight Drosophila lines (OregonR and 2b, and 6 RIL) using a newly designed 60-mer oligonucleotide microarray that allows us to distinguish a large proportion of alternative transcripts. The new microarray incorporates 7,207 oligonucleotides, satisfying stringent binding and specificity criteria that target both the common and the unique regions of 2,768 multi-transcript genes, as well as 12,912 oligonucleotides that target genes with a single known transcript. We estimate that up to 22% of genes that produce multiple transcripts show a sex-specific bias in the representation of alternative transcripts. Sexual dimorphism in overall transcript abundance was evident for 53% of genes. The X chromosome contains a significantly higher proportion of genes with female-biased transcription than the autosomes. However, genes on the X chromosome are no more likely to have a sexual bias in alternative transcript representation than autosomal genes.

Conclusion: Widespread sex-specific expression of alternative transcripts in Drosophila suggests that a new level of sexual dimorphism at the molecular level exists.

Included in

Life Sciences Commons

Share

COinS