Papers in the Biological Sciences

 

Date of this Version

September 2004

Comments

Published in Physiological and Biochemical Zoology 77(2):255–266. 2004.  Copyright 2004 by The University of Chicago. Used by permission.

Abstract

The wing-polymorphic cricket, Gryllus firmus, has a flight-capable morph (LW[f]: long winged with functional flight muscles) and a flightless morph (SW: short winged with reduced nonfunctional flight muscles) that differ genetically in many aspects of lipid metabolism. To determine whether these differences result from genetically based alterations in endocrine regulation, the juvenile hormone mimic, methoprene, was applied to the LW(f) morph. This hormone manipulation converted the LW(f) morph into a SW phenocopy with respect to all aspects of lipid metabolism studied; that is, methoprene application decreased in vivo biosynthesis of total lipid and triglyceride, increased absolute and relative biosynthesis of phospholipid, increased oxidation of fatty acids, and decreased in vitro specific activities of each of six lipogenic enzymes and a transaminase. Furthermore, methoprene increased ovarian growth and decreased fat body mass and flight muscle mass in the LW(f) morph. Differences in each of these biochemical, morphological, or reproductive traits between hormone-treated and control LW(f) females were similar in magnitude to differences between unmanipulated LW(f) and SW females. Variation in endocrine regulation contributes significantly to genetically based differences in lipid metabolism between LW(f) and SW females. This is the first evidence for endocrine regulation of a genetically based life-history trade-off operating via hormonal effects on specific metabolic pathways and enzymes of intermediary metabolism.

Included in

Microbiology Commons

Share

COinS