Papers in the Biological Sciences
Date of this Version
November 1995
Abstract
Hemolymph juvenile hormone esterase (JHE) activity on the third day of the last stadium in the cricket, Gryllus assimilis, exhibited a significant response to selection in each of six replicate lines. Mean realized heritability was 0.26 ± 0.04. The response was due to changes in whole-organism enzyme activity as well as to changes in the proportion of enzyme allocated to the hemolymph compartment. In vivo juvenile hormone metabolism differed between some lines selected for high vs. low enzyme activity. Only minimal differences were observed between lines with respect to hemolymph protein concentration or whole-cricket activity of juvenile hormone epoxide hydrolase, the other major JH-degrading enzyme. Dramatic correlated responses to selection, equal in magnitude to the direct response, were observed for JHE activity on each of three other days of the last juvenile stadium. In contrast, no correlated responses in JHE activity were observed in adults. This indicates that JHE activities throughout the last stadium will evolve as a highly correlated unit independent of adult activities and the evolution of endocrine mechanisms regulating juvenile development can be decoupled from those controlling adult reproduction. This study represents the first quantitative-genetic analysis of naturally occurring endocrine variation in an insect species.
Comments
Published in Genetics 141 (November, 1995), pp. 1125–1134. http://www.genetics.org/ Copyright © 1995 by the Genetics Society of America. Used by permission.