Biological Systems Engineering

 

Date of this Version

3-12-2020

Citation

2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scitotenv.2020.137894

Comments

Science of the Total Environment 722 (2020) 137894

Abstract

Accurate prediction of Escherichia coli contamination in surface waters is challenging due to considerable uncertainty in the physical, chemical and biological variables that control E. coli occurrence and sources in surface waters. This study proposes a novel approach by integrating hydro-climatic variables as well as animal density and grazing pattern in the feature selection modeling phase to increase E. coli prediction accuracy for two cascading dams at the USMeat Animal Research Center (USMARC), Nebraska. Predictive models were developed using regression techniques and an artificial neural network (ANN). Two adaptive neuro-fuzzy inference system (ANFIS) structures including subtractive clustering and fuzzy c-means (FCM)clusteringwere also used to developmodels for predicting E. coli. The performances of the predictive models were evaluated and compared using root mean squared log error (RMSLE). Cross-validation and model performance results indicated that although themajority of models predicted E. coli accurately, ANFIS models resulted in fewer errors compared to the othermodels. The ANFISmodels have the potential to be used to predict E. coli concentration for intervention plans and monitoring programs for cascading dams, and to implement effective best management practices for grazing and irrigation during the growing season.

Share

COinS