Chemical and Biomolecular Research Papers -- Faculty Authors Series

 

Date of this Version

2009

Comments

Published in Proteomics 9 (2009), pp. 2555–2567; doi: 10.1002/pmic.200800775 Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Used by permission. http://www.proteomics-journal.com

Abstract

Human protein C (hPC) is glycosylated at three Asn-X-Ser/Thr and one atypical Asn-X-Cys sequons. We have characterized the micro- and macro-heterogeneity of plasma-derived hPC and compared the glycosylation features with recombinant protein C (tg-PC) produced in a transgenic pig bioreactor from two animals having approximately tenfold different expression levels. The N-glycans of hPC are complex di- and tri-sialylated structures, and we measured 78% site occupancy at Asn-329 (the Asn-X-Cys sequon). The N-glycans of tg-PC are complex sialylated structures, but less branched and partially sialylated. The porcine mammary epithelial cells glycosylate the Asn-X-Cys sequon with a similar efficiency as human hepatocytes even at these high expression levels, and site occupancy at this sequon was not affected by expression level. A distinct bias for particular structures was present at each of the four glycosylation sites for both hPC and tg-PC. Interestingly, glycans with GalNAc in the antennae were predominant at the Asn-329 site. The N-glycan structures found for tg-PC are very similar to those reported for a recombinant Factor IX produced in transgenic pig milk, and similar to the endogenous milk protein lactoferrin, which may indicate that N-glycan processing in the porcine mammary epithelial cells is more uniform than in other tissues.

Included in

Biomaterials Commons

Share

COinS