Department of Chemistry
Date of this Version
10-22-2004
Abstract
A new hybrid atomistic-coarse-grained (HACG) treatment of reversible processes in multiple-scale systems involving fluid-solid interfaces was tested through isothermal-isobaric Monte Carlo simulations of the quasistatic shearing of a model two-dimensional lubricated contact comprising two planar Lennard-Jones solid substrates that sandwich a softer Lennard-Jones film. Shear-stress profiles (plots of shear stress Tyx versus lateral displacement of the substrates) obtained by the HACG technique, which combines an atomistic description of the interfacial region with a continuum description of regions well removed from the interface, are compared with “exact” profiles (obtained by treating the whole system at the atomic scale) for a selection of thermodynamic states that correspond to systematic variations of temperature, load (normal stress), film-substrate coupling strength, and film thickness. The HACG profiles are in excellent agreement overall with the exact ones. The HACG scheme provides a reliable description of quasistatic shearing under a wide range of conditions. It is demonstrated that the elastic response of the remote regions of the substrates can have a significant impact on the static friction profile (plot of maximum magnitude of Tyx versus load).
Comments
Published by American Institute of Physics. J. Chem. Physics VOLUME 121, NUMBER 16, 22 OCTOBER 2004. ©2004 American Institute of Physics. Permission to use. http://jcp.aip.org/.