Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Understanding of the Formation of Micro/Nanoscale Structures on Metal Surfaces by Ultrafast Pulse Laser Processing

Edwin Peng, University of Nebraska - Lincoln

Abstract

In the recent decades, there has been much interest in functionalized surfaces produced by ultrafast laser processing. Using pulse lasers with nanosecond to femtosecond time scale, a wide range of micro/nanoscale structures can be produced on virtually all metal surfaces. These surface structures create special optoelectronic, wetting, and tribological properties with a diverse range of potential applications. The formation mechanisms of these surface structures, especially microscale, mound-like structures, are not fully understood. There has been wide study of ultrafast laser processing of metals. Yet, the proposed formation models present in current literature often lack sufficient experimental verification. Specifically, many studies are limited to surface characterization, e.g. scanning electron microscopy of the surfaces of these micro/nanoscale structures. Valuable insight into the physical processes responsible for formation can be obtained if standard material science characterization methods are performed across the entire mound. In our study, we examined mound-like structures formed on three metal alloys. Using cross section and 3D slice and view operations by a dual beam scanning electron microscope-focused ion beam, the interior microstructures of these mounds are revealed. Taking advantage of amorphous phase formation during laser processing of Ni60Nb40, we verified the fluence-dependent formation model: mounds formed at low fluence are primarily the result of ablation while mounds formed at high fluence are formed by both ablation and rapid resolidification by hydrodynamical fluid flow. For the first time, we revealed the cross section of a wide variety of mound-like structures on titanium surfaces. The increased contribution to mound formation by fluid flow with increasing fluence was observed. Finally, a 3D scanning electron microscopy technique was applied for mounds produced on silver surface by delayed-pulse laser processing. The interior microstructure demonstrated that most of the volume comprised of resolidified silver grains with 1% porosity.

Subject Area

Mechanical engineering|Materials science

Recommended Citation

Peng, Edwin, "Understanding of the Formation of Micro/Nanoscale Structures on Metal Surfaces by Ultrafast Pulse Laser Processing" (2017). ETD collection for University of Nebraska-Lincoln. AAI10682818.
https://digitalcommons.unl.edu/dissertations/AAI10682818

Share

COinS